

Test Plan

for

� FORMTEXT ��Your Project�

Version � FORMTEXT ��Enter Ver/Build�

<your company> Testing Department

Document Signoff:

�
�
Product Manager�
�
�
�
Program Manager�
�
�
�
Development Lead�
�
�
�
Test Manager�
�
�
�
Test Lead�
�
�
�
Lead Data Analyst�
�
�
�
____________________�
�
�
�
____________________�
�

Document Information:

Revision:	1.0

Date Revised:	� FORMTEXT ��Enter Today's Date�

Filename:	5StandardTestPlan.doc

�

Revision History

Tester�
Date�
Comments�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

People Responsible for App

Test Lead:�
�
�
Tester:�
�
�
Developer:�
�
�
Developer Lead:�
�
�
Program Manager:�
�
�

Other People Associated with App

Support Analyst:�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Brief Application Description

�

Table of Contents

� TOC \o "1-4" �Introduction	� GOTOBUTTON _Toc404591926 � PAGEREF _Toc404591926 �5��

Document Summary	� GOTOBUTTON _Toc404591927 � PAGEREF _Toc404591927 �5��

Goals and Objectives	� GOTOBUTTON _Toc404591928 � PAGEREF _Toc404591928 �5��

Background	� GOTOBUTTON _Toc404591929 � PAGEREF _Toc404591929 �5��

Product Vision and Goals	� GOTOBUTTON _Toc404591930 � PAGEREF _Toc404591930 �5��

Product Quality Goals	� GOTOBUTTON _Toc404591931 � PAGEREF _Toc404591931 �5��

Testing Goals	� GOTOBUTTON _Toc404591932 � PAGEREF _Toc404591932 �6��

Scope	� GOTOBUTTON _Toc404591933 � PAGEREF _Toc404591933 �7��

Areas Tested	� GOTOBUTTON _Toc404591934 � PAGEREF _Toc404591934 �7��

Other Areas Not Tested	� GOTOBUTTON _Toc404591935 � PAGEREF _Toc404591935 �7��

Features Tested	� GOTOBUTTON _Toc404591936 � PAGEREF _Toc404591936 �8��

Features Not Tested	� GOTOBUTTON _Toc404591937 � PAGEREF _Toc404591937 �8��

Test Environment	� GOTOBUTTON _Toc404591938 � PAGEREF _Toc404591938 �9��

Hardware	� GOTOBUTTON _Toc404591939 � PAGEREF _Toc404591939 �9��

Software	� GOTOBUTTON _Toc404591940 � PAGEREF _Toc404591940 �9��

Operating Systems	� GOTOBUTTON _Toc404591941 � PAGEREF _Toc404591941 �9��

Test Schedule	� GOTOBUTTON _Toc404591942 � PAGEREF _Toc404591942 �10��

Milestone List	� GOTOBUTTON _Toc404591943 � PAGEREF _Toc404591943 �10��

Assumptions	� GOTOBUTTON _Toc404591944 � PAGEREF _Toc404591944 �10��

Risks	� GOTOBUTTON _Toc404591945 � PAGEREF _Toc404591945 �10��

Test Deliverables	� GOTOBUTTON _Toc404591946 � PAGEREF _Toc404591946 �11��

Deliverables Matrix	� GOTOBUTTON _Toc404591947 � PAGEREF _Toc404591947 �12��

Documents	� GOTOBUTTON _Toc404591948 � PAGEREF _Toc404591948 �13��

Test Plan	� GOTOBUTTON _Toc404591949 � PAGEREF _Toc404591949 �13��

Test Schedule	� GOTOBUTTON _Toc404591950 � PAGEREF _Toc404591950 �13��

Test Specifications	� GOTOBUTTON _Toc404591951 � PAGEREF _Toc404591951 �13��

Test Case / Bug Write-Ups	� GOTOBUTTON _Toc404591952 � PAGEREF _Toc404591952 �13��

TCM Test Cases	� GOTOBUTTON _Toc404591953 � PAGEREF _Toc404591953 �13��

TCM Coverage Reports	� GOTOBUTTON _Toc404591954 � PAGEREF _Toc404591954 �13��

Bug Tracking System Bugs and Regression Results	� GOTOBUTTON _Toc404591955 � PAGEREF _Toc404591955 �13��

Bug Tracking System Analyzer Bug Reports	� GOTOBUTTON _Toc404591956 � PAGEREF _Toc404591956 �14��

Reports	� GOTOBUTTON _Toc404591957 � PAGEREF _Toc404591957 �14��

Weekly Status Reports	� GOTOBUTTON _Toc404591958 � PAGEREF _Toc404591958 �14��

Phase Completion Reports	� GOTOBUTTON _Toc404591959 � PAGEREF _Toc404591959 �14��

Test Final Report - Sign-Off	� GOTOBUTTON _Toc404591960 � PAGEREF _Toc404591960 �14��

CD Archive	� GOTOBUTTON _Toc404591961 � PAGEREF _Toc404591961 �14��

Responsibility Matrix	� GOTOBUTTON _Toc404591962 � PAGEREF _Toc404591962 �14��

Test Methodology	� GOTOBUTTON _Toc404591963 � PAGEREF _Toc404591963 �16��

Test Stages	� GOTOBUTTON _Toc404591964 � PAGEREF _Toc404591964 �16��

Overview	� GOTOBUTTON _Toc404591965 � PAGEREF _Toc404591965 �16��

Milestone 1 - Planning Phase	� GOTOBUTTON _Toc404591966 � PAGEREF _Toc404591966 �16��

Milestone 2 - Design Phase	� GOTOBUTTON _Toc404591967 � PAGEREF _Toc404591967 �16��

Milestone 2a - Usability Testing	� GOTOBUTTON _Toc404591968 � PAGEREF _Toc404591968 �16��

Milestone 3 - Developing Phase	� GOTOBUTTON _Toc404591969 � PAGEREF _Toc404591969 �17��

Milestone 3a - Unit Testing (Multiple)	� GOTOBUTTON _Toc404591970 � PAGEREF _Toc404591970 �17��

Milestone 3b - Acceptance into Internal Release Testing	� GOTOBUTTON _Toc404591971 � PAGEREF _Toc404591971 �17��

Milestone 3c - Internal Release Testing	� GOTOBUTTON _Toc404591972 � PAGEREF _Toc404591972 �17��

Milestone 3d - Acceptance into Alpha Testing	� GOTOBUTTON _Toc404591973 � PAGEREF _Toc404591973 �17��

Milestone 3e - Alpha Testing	� GOTOBUTTON _Toc404591974 � PAGEREF _Toc404591974 �18��

Milestone 4 - Stabilization Phase	� GOTOBUTTON _Toc404591975 � PAGEREF _Toc404591975 �18��

Milestone 4a - Acceptance into Beta Testing	� GOTOBUTTON _Toc404591976 � PAGEREF _Toc404591976 �18��

Milestone 4b - Beta Testing	� GOTOBUTTON _Toc404591977 � PAGEREF _Toc404591977 �18��

Milestone 4c - Release to Manufacturing (RTM)	� GOTOBUTTON _Toc404591978 � PAGEREF _Toc404591978 �19��

Milestone 4d - Post Release	� GOTOBUTTON _Toc404591979 � PAGEREF _Toc404591979 �19��

Test Levels	� GOTOBUTTON _Toc404591980 � PAGEREF _Toc404591980 �19��

Build Tests	� GOTOBUTTON _Toc404591981 � PAGEREF _Toc404591981 �19��

Level 1 - Build Acceptance Tests	� GOTOBUTTON _Toc404591982 � PAGEREF _Toc404591982 �19��

Level 2 - Smoke Tests	� GOTOBUTTON _Toc404591983 � PAGEREF _Toc404591983 �19��

Level 2a - Bug Regression Testing	� GOTOBUTTON _Toc404591984 � PAGEREF _Toc404591984 �19��

Milestone Tests	� GOTOBUTTON _Toc404591985 � PAGEREF _Toc404591985 �19��

Level 3 - Critical Path Tests	� GOTOBUTTON _Toc404591986 � PAGEREF _Toc404591986 �19��

Release Tests	� GOTOBUTTON _Toc404591987 � PAGEREF _Toc404591987 �20��

Level 4 - Standard Tests	� GOTOBUTTON _Toc404591988 � PAGEREF _Toc404591988 �20��

Level 5 - Suggested Test	� GOTOBUTTON _Toc404591989 � PAGEREF _Toc404591989 �20��

Bug Regression	� GOTOBUTTON _Toc404591990 � PAGEREF _Toc404591990 �20��

Bug Triage	� GOTOBUTTON _Toc404591991 � PAGEREF _Toc404591991 �20��

Suspension Criteria and Resumption Requirements	� GOTOBUTTON _Toc404591992 � PAGEREF _Toc404591992 �20��

Test Completeness	� GOTOBUTTON _Toc404591993 � PAGEREF _Toc404591993 �21��

Standard Conditions:	� GOTOBUTTON _Toc404591994 � PAGEREF _Toc404591994 �21��

Bug Reporting & Triage Conditions:	� GOTOBUTTON _Toc404591995 � PAGEREF _Toc404591995 �21��

Criteria for Acceptance into Testing	� GOTOBUTTON _Toc404591996 � PAGEREF _Toc404591996 �21��

TCM and Bug Tracking System Database Standards	� GOTOBUTTON _Toc404591997 � PAGEREF _Toc404591997 �22��

Test Cases	� GOTOBUTTON _Toc404591998 � PAGEREF _Toc404591998 �22��

Bug Documentation	� GOTOBUTTON _Toc404591999 � PAGEREF _Toc404591999 �22��

Bug Severity and Priority Definition	� GOTOBUTTON _Toc404592000 � PAGEREF _Toc404592000 �22��

Severity List	� GOTOBUTTON _Toc404592001 � PAGEREF _Toc404592001 �22��

Priority List	� GOTOBUTTON _Toc404592002 � PAGEREF _Toc404592002 �23��

Bug Reporting	� GOTOBUTTON _Toc404592003 � PAGEREF _Toc404592003 �23��

Bug Tracking System Bug Entry Fields	� GOTOBUTTON _Toc404592004 � PAGEREF _Toc404592004 �23��

Bug Type	� GOTOBUTTON _Toc404592005 � PAGEREF _Toc404592005 �23��

Assigned To	� GOTOBUTTON _Toc404592006 � PAGEREF _Toc404592006 �23��

Product	� GOTOBUTTON _Toc404592007 � PAGEREF _Toc404592007 �23��

Status	� GOTOBUTTON _Toc404592008 � PAGEREF _Toc404592008 �23��

Source	� GOTOBUTTON _Toc404592009 � PAGEREF _Toc404592009 �24��

Priority	� GOTOBUTTON _Toc404592010 � PAGEREF _Toc404592010 �24��

Severity	� GOTOBUTTON _Toc404592011 � PAGEREF _Toc404592011 �24��

Code 1	� GOTOBUTTON _Toc404592012 � PAGEREF _Toc404592012 �24��

�

�

Introduction

This document describes the approach and methodologies used by the testing group to plan, organize and manage the testing of the this application. It does not describe implementation details of test cases or technical details of how the product features should work.

Anything in purple text is boilerplate text that is re-used across all products and versions. Thus, read it once, and you do not have to read it again (unless you choose to).

Document Summary

In this Test Plan, the following areas are included:

Goals and Objectives describe what we have found to be most important about the project and the tests needed for it.

Scope describes what will be and what will not be tested under this plan.

The Test Schedule is presented, based on stated assumptions, with principal risks and contingencies.

The Test Deliverables section indicates what deliverables testing has to produce, and contains a matrix that should be extracted and routinely updated as the producibles are generated. The section also contains a section on other development team members’ responsibilities—extract this matrix and use it also to guide who does what.

Test Methodology is a progression of stages and quality levels to be expected as the product matures, as well as the typical cycle of testing between builds.

Criteria for Acceptance into Testing defines what testing’s expectations are to accept a build for testing.

TCM and Bug Tracking System Database Standards are listed so that developers, program managers, and others understand the basic standards of how and where we track test cases and bugs. These parties external to testing will use Bug Tracking System and will read TCM reports, so it is important to include the boilerplate text for them to gain an understanding of our processes.

Goals and Objectives

This section defines the goals and objectives for the product / project, and for the quality of the project, and for the testing team.

Background

< The XXX project is a client server application that does… >

< It was written originally in 199X… >

Product Vision and Goals

< Copy and Paste the vision and goals for this release of the project. The product manager and program manager will have created these goals. >

Goal #1…

Goal #2…

Goal #3…

Product Quality Goals

Important qualities include:

Reliability, proper functioning as specified and expected.

Robustness, acceptable response to unusual inputs, loads and conditions.

Timeliness, timely and expected delivery schedule.

Efficiency of use by the frequent users

Easy, attractive and helpful for the less frequent users

Testing Goals

Important testing goals include:

Identify and publish the scope and substance of the testing effort (test case coverage report).

Identify and publish risks to the successful completion of the project.

Verify functional correctness (critical path must work).

Report on the status of the product regarding the tests and measures (weekly status reports).

Confirm consistency in design and implementation within the application.

Confirm consistency with standards in other applications.

Test product robustness and stability.

Measure performance ‘hot spots’ (locations or features that are problem areas).

�

Scope

This section defines the scope of the testing. It identifies what items (files, etc.) and what areas of functionality (features) will be tested.

Areas Tested

Test�

#�

Area Name�
�
Yes�
1�
Data�
�
Yes�
2�
Installation�
�
Yes�
3�
User Interface�
�
No�
4�
Library / DLL Components�
�
…�
5�
Environment�
�
�
6�
Error Handling�
�
�
7�
Performance�
�
�
8�
Stress�
�
�
9�
Design Documents�
�
�
10�
Utilities�
�
�
11�
User Scenarios�
�
�
�
�
�
�
�
�
�

Other Areas Not Tested

Undocumented Features: Not responsible for bugs appearing in undocumented or non-maintained areas of the specification.

External Product Impact: Not responsible for bugs dependent on released Microsoft products. Any bugs that are found will be reported to the respective product group.

Backend Data Maintenance: SQL Server / Oracle backup and recovery, etc..

�

Features Tested

#�

Testing

Priority�
Size

(1-10)

1=small�

Feature Name�

Feature Description�
�
1�
H�
5�
Installation Routine�
…�
�
2�
M�
5�
Feature 2�
…�
�
3�
L�
2�
Feature 3�
…�
�
4�
�
�
�
�
�
5�
�
�
�
�
�
6�
�
�
�
�
�
7�
�
�
�
�
�
8�
�
�
�
�
�
9�
�
�
�
�
�
10�
�
�
�
�
�
11�
�
�
�
�
�
12�
�
�
�
�
�
13�
�
�
�
�
�
14�
�
�
�
�
�

Features Not Tested

The following items will not be tested by the <your company> Testing department during this release cycle:

White Box Testing will be performed by the developers, not the black box testing team.

Third party OCX / DLL testing will be not be actively performed. We will passively test these components through GUI testing only.

…

…

…

�

Test Environment

Hardware

Testing will have access control to one or more application/database servers separate from any used by non-test members of the project team. Testing will also have access control to an adequate number of variously configured PC workstations to assure testing a range from the minimum to the recommended client hardware configurations listed in the project’s Requirements, Functional Specification and Design Specification documents.

Software

In addition to the application and any other customer specified software, the following list of software should be considered a minimum:

MS Office 95 Professional

MS Exchange

TCM (Testing Tool Server)

Bug Tracking System?

Operating Systems

The product will be tested in

Windows for Workgroups 3.11

Windows 95

Windows NT 3.51.

The product will NOT be tested in:

Windows NT 4.0.

�

Test Schedule

Milestone List

Below is a list of milestones that testing will track actual dates vs. scheduled dates.

Schedule

#�
Milestone Name�
Sched’d Date�
Actual Date�
�
1�
Planning Phase Starts�
�
�
�
2�
Planning Phase Ends�
�
�
�
3�
Design Phase Starts�
�
�
�
4�
Usability Testing�
�
�
�
5�
Prototype Complete�
�
�
�
6�
Design Phase Ends�
�
�
�
7�
Development Phase Starts�
�
�
�
8�
Acceptance into Internal Release Testing�
�
�
�
9�
Internal Release Testing Complete�
�
�
�
10�
Acceptance into Alpha Testing�
�
�
�
11�
Alpha Testing Complete�
�
�
�
12�
Development Phase Complete�
�
�
�
13�
Stabilization Phase Starts�
�
�
�
14�
Acceptance into Beta Testing�
�
�
�
15�
Beta Testing Complete�
�
�
�
16�
Release To Manufacturing�
�
�
�
17�
Project Post Mortem�
�
�
�

Assumptions

The following assumptions were used to develop this test plan, and the test schedule:

Requirements and Functional Specification are complete, current, and stable.

Development will run a verification test for each drop, including unit tests of the changed code and integration tests of any builds for supplemental utilities that they build.

Onyx is assumed friendly, reliable, and responsive, without major functional flaws.

…

…

Risks

Requirements and Functional Specification may not be adequately detailed to generate detailed test cases.

The possibility that Testing’s allotted time will be cut short. Mitigation strategy is to organize test cases in TCM by level, and test the higher level test cases first, leaving the lower level ‘Standard’ and ‘Suggested’ test cases until time permits their execution.

…

…

…

…

Test Deliverables

Testing will provide specific deliverables during the project. These deliverables fall into three basic categories: Documents, Test Cases / Bug Write-ups, and Reports. Here is a diagram indicating the dependencies of the various deliverables:

�

As the diagram above shows, there is a progression from one deliverable to the next. Each deliverable has its own dependencies, without which it is not possible to fully complete the deliverable.

The following page contains a matrix depicting all of the deliverables that Testing will use.

�

Deliverables Matrix

This matrix should be updated routinely throughout the project development cycle in you project specific Test Plan.

Deliverable�

Milestone�

Sign-Off�
�
Documents�
�
�
�
 Test Approach�
Planning�
�
�
 Test Plan�
Design�
�
�
 Test Schedule�
Design�
�
�
 Test Specifications�
Development�
�
�
Test Case / Bug Write-Ups�
�
�
�
 TCM Test Cases / Results�
All�
�
�
 TCM Coverage Reports�
All�
�
�
 Bug Tracking System Bugs and Regression Results�
All�
�
�
 Bug Tracking System Analyzer Bug Reports�
All�
�
�
Reports�
�
�
�
 Weekly Status Reports�
All�
�
�
 Phase Completion Reports�
All�
�
�
 Test Final Report - Sign-Off�
Stabilization�
�
�
 CD Archive�
Stabilization�
�
�
�
�
�
�

�

Documents

Test Plan

The Test Plan is derived from the Test Approach, Requirements, Functional Specs, and detailed Design Specs. The Test Plan identifies the details of the test approach, identifying the associated test case areas within the specific product for this release cycle. When this document is completed, the Test Lead will distribute it to <your company> Product Management and <your company> Development for sign-off.

The purpose of the Test Plan document is to:

Specify the approach that Testing will use to test the product, and the deliverables (extract from the Test Approach).

Break the product down into distinct areas and identify features of the product that are to be tested.

Specify the procedures to be used for testing sign-off and product release.

Indicate the tools used to test the product.

List the resource and scheduling plans.

Indicate the contact persons responsible for various areas of the project.

Identify risks and contingency plans that may impact the testing of the product.

Specify bug management procedures for the project.

Specify criteria for acceptance of development drops to testing (of builds).

Test Schedule

The Test Schedule is the responsibility of the Test Lead (or Department Scheduler, if one exists) and will be based on information from the Project Scheduler (done by Product Manager). The project specific Test Schedule will be done in MS Project.

Test Specifications

A Test Specification document is derived from the Test Plan as well as the Requirements, Functional Spec., and Design Spec documents. It provides specifications for the construction of Test Cases and includes list(s) of test case areas and test objectives for each of the components to be tested as identified in the project’s Test Plan.

Test Case / Bug Write-Ups

TCM Test Cases

Test Cases will be documented in TCM (Access database utility, contact alias ‘tcm’ for assistance). Test Cases are developed from the Test Specifications, Functional Spec., and Design Spec. Test Cases are detailed at the lowest level of complexity. Results will be tracked as either Pass or Fail in the TCM database. There must be an associated Bug Tracking System bug for every Failed Test Case.

TCM Coverage Reports

Test Case Coverage Reports will provide the current status of test cases and pass/fail information. The reports can breakdown the status information across the different test case areas, by level (Smoke, Critical Path, Standard, Suggested, etc.), and in other formats.

Bug Tracking System Bugs and Regression Results

Bugs found will be documented and tracked in the company-wide Bug Tracking System system. There will be an associated Test Case (in TCM) for every Bug Tracking System bug written. Standards for writing up bugs are detailed in a later section entitled TCM and Bug Tracking System Database Standards section of this document.

Bug Tracking System Analyzer Bug Reports

Reports from the Bug Tracking System Analyzer Bug Reports will be used to communicate information on all bugs to appropriate project personnel.

Reports

The Test Lead will be responsible for writing and disseminating the following reports to appropriate <your company> project personnel as required.

Weekly Status Reports

A weekly status report will be provided by the Test Lead to project personnel. This report will summarize weekly testing activities, issues, risks, bug counts, test case coverage, and other relevant metrics.

Phase Completion Reports

When each phase of testing is completed, the Test Lead will distribute a Phase Completion Report to the Product manager, Development Lead, and Program Manager for review and sign-off.

The document must contain the following metrics:

Total Test Cases, Number Executed, Number Passes / Fails, Number Yet to Execute

Number of Bugs Found to Date, Number Resolved, and Number still Open

Breakdown of Bugs by Severity / Priority Matrix

Discussion of Unresolved Risks

Discussion of Schedule Progress (are we where we are supposed to be?)

Test Final Report - Sign-Off

A Final Test Report will be issued by the Test Lead. It will certify as to the extent to which testing has actually completed (test case coverage report suggested), and an assessment of the product’s readiness for Release to Production.

CD Archive

Once a project release cycle has been completed, all source code, documentation (including requirements, functional spec, design spec, test plan, etc.), all testware automation, etc. should be archived onto a CD for permanent storage.

Responsibility Matrix

Task�
Prog�Mgmt�

Dev�

Test�
Prod.

Mgmt�
Who is Responsible�
Date

Compl’d�
�
Project Plan�
S�
�
�
P�
�
�
�
Project Schedule�
P�
�
�
S�
�
�
�
Requirements�
S�
�
�
P�
�
�
�
Functional Specification�
S�
�
�
P�
�
�
�
Detailed Design Specification�
�
P�
�
�
�
�
�
Test Approach�
�
�
P�
�
�
�
�
Test Plan�
�
�
P�
�
�
�
�
Test Schedule�
�
�
P�
�
�
�
�
User Acceptance Test Plan (Beta)�
S�
�
S�
P�
�
�
�
TCM Test Cases & Results�
�
�
P�
�
�
�
�
TCM Coverage Reports�
�
�
P�
�
�
�
�
Bug Tracking System Bugs�
�
�
P�
�
�
�
�
Bug Tracking System Bug Analyzer�
�
�
P�
�
�
�
�
Weekly Status Reports�
P�
P�
P�
P�
�
�
�
Test Final Report�
�
�
P�
�
�
�
�
CD Archive�
�
�
P�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
 P - Primary; S - Secondary

�

Test Methodology

Test Stages

Overview

There are four major milestones in the <your company> Development cycle: Planning Phase, Design Phase, Development Phase, and Stabilization Phase. The Planning Phase culminates in the completion of the Planning Docs Milestone (Requirements plus Functional Spec). The Design Phase culminates in the completion of the Design Spec and Test Plan / Test Spec. The Development Phase culminates in the Code Complete Milestone. The Stabilization Phase culminates in the Release Milestone.

During the first two phases, testing plays a supporting role, providing ideas and limited testing of the planning and design documents. Throughout the final two stages, testing plays a key role in the project.

Milestone 1 - Planning Phase

During the first phase of the Development Cycle, testing should focus upon the Requirements and Functional Specs. Testing reviews these documents for their comprehensibility, accuracy, and feasibility. Specific tasks that testing may carry out during this phase include:

Assessing the impact of Requirements on testing.

Providing metrics factors (preliminary schedule, estimated test case and bug counts, etc.)

Identifying project infrastructure issues

Identifying risks related to the testing and development process

Milestone 2 - Design Phase

During the second phase of the Development Cycle, testing is focused upon evaluating the design and is required to produce and distribute its draft Test Plan. To generate the Test Plan, Test Spec, and Test Cases, testing requires that the Requirements, Functional Spec, Design Documents, Business Rules, and Project Plan/Schedule be completed and a copy emailed to the test point person.

During this phase, testing may participate within the design reviews (with development) and have access to the Design Spec under construction. This will help testing better prepare its Test Plan, Test Spec, and Test Cases. The Test Plan defines much of the detailed strategy and specific testing information that will be used for testing the application.

The purpose of the Test Plan is to achieve the following:

Divide Design Spec into testable areas and sub-areas (do not confuse with more detailed test spec). Be sure to also identify and include areas that are to be omitted (not tested) also.

Define testing strategies for each area and sub-area.

Define bug-tracking procedures.

Define release and drop criteria.

Define list of configurations for testing.

Identify testing risks.

Identify required resources and related information.

Provide testing Schedule.

Milestone 2a - Usability Testing

The purpose of usability testing is to ensure that the new components and features will function in a manner that is acceptable to the customer. Development will typically create a non-functioning prototype of the UI components to evaluate the proposed design. Usability testing can be coordinated by testing, but actual testing must be performed by non-testers (as close to users as possible). Testing will review the findings and provide the project team with its evaluation of the impact these changes will have on the testing process and to the project as a whole.

Milestone 3 - Developing Phase

During the third phase of the development cycle, testing begins to execute its primary role by identifying issues (bugs). At the beginning of this phase, testing will be spending most of its time generating test cases in TCM.As this phase progresses, however, testing will receive release candidates (builds) of increasing functionality to test. By the time the development phase closes, then, testing will be primarily executing test cases.

Development’s internal releases during this phase ultimately drive toward a static Alpha build (recognized as code-complete). While <your company> Development is working on the code for an interim milestone (builds generated as features completed), <your company> Testing writes the test specification and test cases for that feature set. During this phase, <your company> Development will also be conducting its unit testing (white box testing) prior to every internal release to <your company> Testing.

Milestone 3a - Unit Testing (Multiple)

Unit Testing is conducted by <your company> Development to ensure that proper functionality and code coverage have been achieved by each developer both during coding and in preparation for acceptance into alpha testing. Involvement in unit testing by <your company> Testing during this phase should be in an advisory capacity only. It is the responsibility of <your company> Testing to require that a set level of quality control is adopted and maintained by <your company> Development throughout this phase.

The following areas of the project must be unit-tested and signed-off before being passed on to <your company> Testing:

Databases, Stored Procedures, Triggers, Tables, and Indexes

NT Services

Database conversion

.OCX, .DLL, .EXE and other binary formatted executables

The exit criteria for this milestone is code-complete. That is, all functionality and logical and physical components of the application must be completed and made available to testing according to the requirements within the drop criteria.

Milestone 3b - Acceptance into Internal Release Testing

Internal releases are issued builds containing new functionality (and may include bug fixes). Before accepting a project for Internal Release Testing, <your company> Testing must be assured that adequate unit testing has been done by <your company> Development. A build must pass the following Build Acceptance Test before moving into Internal Release Testing:

Sign-off from the development lead that unit testing is complete on all modules released

Verification that the code is located at a specified drop point.

Verification that Release Notes accompany the new build (discussion of changes, areas not to test, etc.)

<your company> Testing can install the build from a SETUP.EXE file located at the drop point

Verification that all “Build Acceptance Test” test cases (preferable automated) pass thereby indicating that the basic components work

UI layout freeze has occurred

Database structure freeze has occurred

Milestone 3c - Internal Release Testing

Internal Release Testing is the evaluation of the *new* UI and functionality that has been incorporated into the new build. Several cycles of Internal Release Testing will occur (every time <your company> Testing receives a new drop of a build). Completion of this phase will occur when code is complete, and subsequent drops of new builds will include only bug fixes with no new feature code.

Internal Release Testing will include:

Execution of TCM test cases

Documentation into Bug Tracking System of any variations from expected results

Addition of newly discovered test cases into TCM

Milestone 3d - Acceptance into Alpha Testing

Alpha testing occurs after code complete has been achieved; all subsequent builds throughout alpha will thus consist of bug fixes only. Initial receipt of the application defined as code complete into alpha testing requires that all critical path test cases pass to ensure that general aspects of the application are robust enough to undergo the testing process. The application must be functionally complete. The drop of the application to <your company> Testing should meet the same requirements as any drop criteria (see above).

Passing this milestone indicates that Alpha Testing is ready to commence. Failure into acceptance requires that the drop be rejected back to <your company> Development. This would only occur in only two instances: one, where the drop criteria had not been properly met; or two, when a bug of sufficient severity prevents running test cases against the application.

Milestone 3e - Alpha Testing

During the repeated cycles of identifying bugs and taking receipt of new builds (containing bug fix code changes), there are several processes which are common to this phase across all projects. These include the various types of tests: functionality, performance, stress, configuration, etc. There is also the process of communicating results from testing and ensuring that new drops contain stable fixes (regression). The project should plan for a minimum of 3-4 cycles of testing (drops of new builds) in this phase with 6-8 for even the best development teams.

Throughout the course of alpha testing, frequent and regular triage meetings shall be held with the project team (more frequent than in previous phases of the development cycle). <your company> testing shall present their bug findings as recorded within the project Bug Tracking System database. The objective of the triage meeting is to determine priorities for bug fixes.

Milestone 4 - Stabilization Phase

During the fourth and final stage of the Development Cycle, <your company> Testing performs most of the work (relative to other groups). Here is where testing resource loading is at its peak. Upon entering this phase, the application has been internally tested module by module, and has undergone alpha testing cycles.

The objective of this phase is to arrive at the Release Milestone with a robust release candidate (build). There is still an emphasis on <your company> Testing to continue to identify issues (bugs) and regress the bug fixes. All project members, plus tech support colleagues may become involved in this process during this phase.

Milestone 4a - Acceptance into Beta Testing

Upon entering this milestone, <your company> Testing must provide a brief report indicating testing results to date. Specifically, the report must show that to the best degree achievable during the alpha testing phase, all identified severity 1 and severity 2 bugs have been communicated and addressed. At a minimum, all priority 1 and priority 2 bugs should be resolved prior to entering the beta phase.

Important deliverables required for acceptance into beta testing include:

Application SETUP.EXE

Installation instructions

All documentation (beta test scripts, manuals or training guides, etc.)

Milestone 4b - Beta Testing

This milestone process is typically conducted by the User Education / Training Department (Greg Linaker, John Nicholls, …), and a selected user group. <your company> Testing participates in this milestone process as well by providing confirmation feedback on new issues uncovered, and input based on identical or similar issues detected earlier. The intention is to verify that the product is ready for distribution, acceptable to the customer and iron out potential operational issues. It is a resource intensive process in which Training cooperates with Product Management to develop a focused Acceptance Test Plan specifying the objectives, scope and duration of the Beta phase.

Throughout the beta test cycle, bug fixes will be focused on minor and trivial bugs (severity 3 and 4). <your company> Testing will continue its process of verifying the stability of the application through regression testing (existing known bugs, as well as existing test cases). <your company> Testing will also assist with confirmation feedback to beta test results (yes it is a bug, yes development is working on a fix, etc.)

The milestone target of this phase is to establish that the application under test has reached a level of stability, appropriate for its usage (number users, etc.), that it can be released to the client users.

Milestone 4c - Release to Manufacturing (RTM)

Release to manufacturing for production an occur only after the successful completion of the application under test throughout all of the phases and milestones previously discussed above. The milestone target is to place the release candidate (build) into production after it has been shown that the app has reached a level of stability that meets or exceeds the client expectations as defined in the Requirements, Functional Spec., and <your company> Production Standards (not yet in existence).

<your company> Testing will ensure that the Gold Release Set passes the following test cases:

Check for extra or missing files (Diff operation on directory).

Proper date stamps on all files (Diff operation on directory).

Binary comparison of source files (\Windows\Command\fc.exe operation on file).

Installation test on clean machine one more time.

Basic functionality test (use automated smoke tests).

Milestone 4d - Post Release

During this phase, testing archives all project documents, notes, test-ware (automation scripts, etc.), email, source code, etc. Archiving is the responsibility of the Test Lead. Testing also prepares a post-implementation review document discussing the testing process throughout the development cycle.

Test Levels

Testing of an application can be broken down into three primary categories and several sub-levels. The three primary categories include tests conducted every build (Build Tests), tests conducted every major milestone (Milestone Tests), and tests conducted at least once every project release cycle (Release Tests). The test categories and test levels are defined below:

Build Tests

Level 1 - Build Acceptance Tests

Build Acceptance Tests should take less than 2-3 hours to complete (15 minutes is typical). These test cases simply ensure that the application can be built and installed successfully. Other related test cases ensure that <your company> Testing received the proper Development Release Document plus other build related information (drop point, etc.). The objective is to determine if further testing is possible. If any Level 1 test case fails, the build is returned to developers un-tested.

Level 2 - Smoke Tests

Smoke Tests should be automated and take less than 2-3 hours (20 minutes is typical). These tests cases verify the major functionality a high level. The objective is to determine if further testing is possible. These test cases should emphasize breadth more than depth. All components should be touched, and every major feature should be tested briefly by the Smoke Test. If any Level 2 test case fails, the build is returned to developers un-tested

Level 2a - Bug Regression Testing

Every bug that was “Open” during the previous build, but marked as “Fixed, Needs Re-Testing” for the current build under test, will need to be regressed, or re-tested. Once the smoke test is completed, all resolved bugs need to be regressed. It should take between 5 minutes to 1 hour to regress most bugs.

Milestone Tests

Level 3 - Critical Path Tests

Critical Path test cases must pass by the end of every 3-5 Build Test Cycles. Critical Path test cases are targeted on features and functionality that the user will see and use every day. They do not need to be tested every drop, but must be tested at least once per milestone. Thus, the Critical Path test cases must all be executed at least once during the Alpha cycle, and once during the Beta cycle.

Release Tests

Level 4 - Standard Tests

Test Cases that need to be run at least once during the entire test cycle for this release. These cases are run once, not repeated as are the test cases in previous levels. Functional Testing and Detailed Design Testing (Functional Spec and Design Spec Test Cases, respectively). These can be tested multiple times for each Milestone Test Cycle (alpha, beta, etc.).

Standard test cases usually include Installation, Data, GUI, and other test areas.

Level 5 - Suggested Test

These are Test Cases that would be nice to execute, but may be omitted due to time constraints.

Most Performance and Stress Test Cases are classic examples of Suggested test cases (although some should be considered standard test cases). Other examples of suggested test cases include WAN, LAN, Network, and Load testing.

Bug Regression

Bug Regression will be a central tenant throughout all testing phases. All bugs that are resolved as “Fixed, Needs Re-Testing” will be regressed when <your company> Testing is notified of the new drop containing the fixes. When a bug passes regression it will be considered “Closed, Fixed”. If a bug fails regression, <your company> Testing will notify <your company> development by entering notes into Bug Tracking System. When a Severity 1 bug fails regression, <your company> Testing should also put out an immediate email to development. The Test Lead will be responsible for tracking and reporting to development and product management the status of regression testing.

It is recommended that a separate cycle of regression testing occur at the end of each phase to confirm the resolution of Severity 1 and 2 bugs (yes, re-test them again). The scope of this last cycle should be determined by the test point person and product management (regress all Severity 1 and 2, 50% of, 40% of, etc.)

Bug Triage

Bug Triages will be held throughout all phases of the development cycle. Bug triages will be the responsibility of the Test Lead. Triages will be held on a regular basis with the time frame being determined by the bug find rate and project schedules. Thus, it would be typical to hold few triages during the Planning phase, then maybe one triage per week during the Design phase, ramping up to twice per week during the latter stages of the Development phase. Then, the Stabilization phase should see a substantial reduction in the number of new bugs found, thus a few triages per week would be the maximum (to deal with status on existing bugs).

The Test Lead, Product Manager, and Development Lead should all be involved in these triage meetings. The Test Lead will provide required documentation and reports on bugs for all attendees. The purpose of the triage is to determine the type of resolution for each bug and to prioritize and determine a schedule for all “To Be Fixed Bugs’. Development will then assign the bugs to the appropriate person for fixing and report the resolution of each bug back into the Bug Tracking System system. The Test Lead will be responsible for tracking and reporting on the status of all bug resolutions.

Suspension Criteria and Resumption Requirements

Testing will be suspended on the affected software module when Smoke Test (Level 1) or Critical Path (Level 2) test case bugs are discovered. A bug report will be filed in Bug Tracking System and <your company> Development and Product Management will be notified. After fixing the bug, <your company> Development will follow the drop criteria (described above) to provide its latest drop to <your company> Testing. At that time, <your company> Testing will regress the bug, and if passes, continue testing the module.

Notice that some discretion is in order here on the part of the Test Lead. To suspend testing, the bug had better be reproducible, it had better be clearly defined, and it had better be significant.

Test Completeness

Testing will be considered complete when the following conditions have been met:

Standard Conditions:

When <your company> Testing, <your company> Development, <your company> Program Management, and <your company> Product Management agree that testing is complete, the app is stable, and agree that the application meets functional requirements.

Script execution of all test cases in all areas have passed.

Automated test cases have in all areas have passed.

All priority 1 and 2 bugs have been resolved and closed.

Each test area has been signed off as completed by the Test Lead.

50% of all resolved severity 1 and 2 bugs have been successfully re-regressed as final validation.

Ad hoc testing in all areas has been completed.

Bug Reporting & Triage Conditions:

Bug find rate indicates a decreasing trend prior to Zero Bug Rate (no new Sev. 1/2/3 bugs found).

Bug find rate remains at 0 new bugs found (Sev. 1/2/3) despite a constant test effort across 3 or more days.

Bug severity distribution has changed to a steady decrease in Sev. 1 and 2 bugs discovered.

No ‘Must Fix’ bugs remaining prior despite sustained testing.

Criteria for Acceptance into Testing

For a build to be accepted for testing, the following items must be met:

Development Unit Testing: Each new build has to be tested by the development team before released to testing.

Existing Bugs Fixed: Developers must resolve all previously discovered bugs marked for fix. If there are too many unfixed bugs which should have been fixed, then <your company> Testing may reject the build.

Development Release Document: must be issued for every new build. It will include the build number, all changes, and new features from the previous build. In a component release, it should indicate which areas are ready for testing, and which areas are not. If the DRD is not provided then <your company> Testing may reject the build until one is made available.

Instructions: All necessary setup instruction and scripts should be provided.

Elements List: A list of all elements in the current drop with version number.

�

TCM and Bug Tracking System Database Standards

<your company> Testing has defined standards for the structure of and entry of data into both TCM and Bug Tracking System. These standards will be adhered to in all projects.

Please review the TCM Mini User’s Manual, and TCM Design Spec for further details on TCM. Please review your Bug Tracking System User’s Guide for additional information on this bug tracking system.

Test Cases

<your company> Testing’s test cases will be entered and administered in Test Case Manager (TCM). The Test Lead will be responsible for the maintenance of TCM. Testing will track and report the success or failure of the test cases. Tracking of test cases will include when tests were run, by whom, and code version/build number as well as any comments logged after the test case was run. The Test Lead will provide project management with reports.

See the Standard Test Approach document for further details.

Bug Documentation

All bugs will be documented in Bug Tracking System. The Bug Tracking System description will follow the <your company> test case / bug write-up standard (included below). The Test Lead will be responsible for the maintenance of the Bug Tracking System database and bugs therein. All necessary project team members should have access to Bug Tracking System.

Every bug entered into Bug Tracking System will have an associated TCM test case number associated with it. Where a bug does not fit into an existing test case, a new test case will be created and its number referenced in the Bug Tracking System bug entry. The new test case will have the ‘ADHOC’ flag set to true. Older cases may be updated to extend their potential for catching the new bug as long as it doesn’t significantly alter the objective of the original test case. In the event that a bug is found by a person outside if <your company> Testing, the bug should be reported to the Test Lead who will then assure that further testing is completed to verify the existence of the bug, refine the repro steps, incorporate it into TCM, and add it to Bug Tracking System.

Bug Severity and Priority Definition

Bug Severity and Priority fields are both very important for categorizing bugs and prioritizing if and when the bugs will be fixed. The bug Severity and Priority levels will be defined as outlined in the following tables below. Testing will assign a severity level to all bugs. The Test Lead will be responsible to see that a correct severity level is assigned to each bug.

The Test Lead, Development Lead and Program Manager will participate in bug review meetings to assign the priority of all currently active bugs. This meeting will be known as “Bug Triage Meetings”. The Test Lead is responsible for setting up these meetings on a routine basis to address the current set of new and existing but unresolved bugs.

Severity List

The tester entering a bug into Bug Tracking System is also responsible for entering the bug Severity.

Severity ID�
Severity Level�
Severity Description�
�
1�
Crash�
The module/product crashes or the bug causes non-recoverable conditions. System crashes, GP Faults, or database or file corruption, or potential data loss, program hangs requiring reboot are all examples of a Sev. 1 bug.�
�
2�
Major�
Major system component unusable due to failure or incorrect functionality. Sev. 2 bugs cause serious problems such as a lack of functionality, or insufficient or unclear error messages that can have a major impact to the user, prevents other areas of the app from being tested, etc. Sev. 2 bugs can have a work around, but the work around is inconvenient or difficult.�
�
3�
Minor�
Incorrect functionality of component or process. There is a simple work around for the bug if it is Sev. 3.�
�
4�
Trivial�
Documentation errors or signed off severity 3 bugs.�
�
Priority List

Priority ID�
Priority Level�
Priority Description�
�
1�
Must Fix�
This bug must be fixed immediately, the product cannot ship with this bug.�
�
2�
Should Fix�
These are important problems that should be fixed as soon as possible. It would be an embarrassment to the company if this bug shipped.�
�
3�
Fix When Have Time�
The problem should be fixed within the time available. If the bug does not delay shipping date, then fix it.�
�
4�
Low Priority�
It is not important (at this time) that these bugs be addressed. Fix these bugs after all other bugs have been fixed.�
�

Bug Reporting

<your company> Testing recognizes that the bug reporting process is a critical communication tool within the testing process. Without effective communication of bug information and other issues, the development and release process will be negatively impacted.

The Test Lead will be responsible for managing the bug reporting process. Testing’s standard bug reporting tools and processes will be used. Bug Tracking System is the company-wide standard Bug Logging / Tracking tool. Testing and development will enter their data into the Bug Tracking System database following the field entry definitions defined below.

Bug Entry Fields

Bug Type

This field indicates what bug type was discovered. Bug types include:

Documentation: bugs are those found in help files, user’s manuals, training guides, etc.

System Crash: bugs are those that cause the application or the entire operating system to crash. These generally warrant a Severity 1 rating.

Trappable Errors: are bugs that pop up an error box, but do not necessarily crash the application. These generally warrant a Severity 2 bug (although occasionally a Sev 1 is appropriate).

User Interface: bugs are those found in the graphical layout of the application. They typically include bugs such as controls that are not aligned, do not work, do the wrong action, etc.

Hardware: bugs are those that an operation works with one set of hardware but fails under another hardware scenario.

Erroneous Output: bugs are those in which reports have errors, data is processed incorrectly, etc.

Suggestion: These *are* bugs that can not be objectively identified, but rather are subjective opinions from experts (testers) as to how a product can be improved.

Assigned To

This field contains a list of the names of the project team members to whom the bug is currently assigned. The person(s) in this field are expected to be doing their part to resolve the bug.

Product

This field contains the name of the product under test from which the bug was born. A drop list provides the user with all permissible options.

Status

This field indicates the current bug status. The permissible values include:

New: status indicates a bug that was just discovered.

Under Review: status indicates a bug that is being reviewed and fixed by development.

Testing In Progress: status indicates a bug that is being re-tested, but will take time, or is awaiting some criteria before it can be re-tested.

Needs Re-Test: status indicates a bug that has been fixed and is awaiting re-testing.

Re-Review: status indicates a bug that was fixed, re-tested, and found to still contain the error.

Closed: status indicates a bug that has been fixed, re-tested and passes verification. Yeah! The bug is fixed.

Temp Deferred: status indicates a bug that has been deferred until the patch release, etc.

Source

This field indicates who found the bug: Testing, Technical Support, or Other.

Priority

This field is a numeric indication of the importance of fixing a bug. It is typically set during bug triages in accordance with <your company> Testing’s Bug Fix Priority definitions (described earlier in this document). Values range from Low, to Medium (Should Fix), to High Priority (Must Fix).

Severity

This field is a numeric indication of the importance of the significance which Testing places on this bug. Permissible values include 1 (Crash), 2 (Major), 3 (Minor), and 4 (Trivial). The Severity ratings are described earlier in this document.

Code 1

Deferred: outcome indicating that bug will be deferred until next release (postponed).

By Design: outcome indicating that bug was intended to act that way, and expected value is in fact the same as actual value (thus, tester’s assertions for expected values were erroneous).

Duplicate: outcome indicating that bug already exists.

Fixed: status indicating that bug has been fixed.

Not a Bug: outcome indicating that bug was not truly a bug at all.

Not Reproducible: outcome indicating that bug was unable to be reproduced.

Suggestion: outcome indicating that bug is a suggestion that will not be implemented.

Test Plan		Print Date: � PRINTDATE * MERGEFORMAT �11/25/97 8:11 AM�

	- � PAGE �24� -

