HBSI Standard Test Approach

Print Date: 01/15/00-4:37 PM

Standard Test Approach

Document Signoff:

Product Manager

Program Manager

Development Lead

Test Manager

Test Lead

Lead Data Analyst

Document Information:

Revision:
1.0

Date Revised:
10/7/1997

Filename:
Standard Test Approach.doc

Table of Contents
5

Revision History

Contributors
5

Introduction
6

Quality Objective
6

Primary Objective
6

Secondary Objective
6

Test Methodology
6

Test Stages
6

Overview
6

Milestone 1 - Planning Phase
7

Milestone 2 - Design Phase
7

Milestone 2a - Usability Testing
7

Milestone 3 - Developing Phase
7

Milestone 3a - Unit Testing (Multiple)
8

Milestone 3b - Acceptance into Internal Release Testing
8

Milestone 3c - Internal Release Testing
8

Milestone 3d - Acceptance into Alpha Testing
8

Milestone 3e - Alpha Testing
9

Milestone 4 - Stabilization Phase
9

Milestone 4a - Acceptance into Beta Testing
9

Milestone 4b - Beta Testing
9

Milestone 4c - Release to Manufacturing (RTM)
10

Milestone 4d - Post Release
10

Test Levels
10

Build Tests
10

Level 1 - Build Acceptance Tests
10

Level 2 - Smoke Tests
10

Level 2a - Bug Regression Testing
11

Milestone Tests
11

Level 3 - Critical Path Tests
11

Release Tests
11

Level 4 - Standard Tests
11

Level 5 - Suggested Test
11

Bug Regression
11

Bug Triage
11

Suspension Criteria and Resumption Requirements
12

Test Completeness
12

Standard Conditions:
12

Bug Reporting & Triage Conditions:
12

Test Deliverables
13

Deliverables Matrix
14

Documents
14

Test Approach Document
14

Test Plan
14

Test Schedule
15

Test Specifications
15

Test Case / Bug Write-Ups
15

TCM Test Cases
15

TCM Coverage Reports
15

Buggit Bugs and Regression Results
15

Buggit Analyzer Bug Reports
15

Reports
15

Weekly Status Reports
16

Phase Completion Reports
16

Test Final Report - Sign-Off
16

CD Archive
16

Responsibility Matrix
16

Resource & Environment Needs
17

Testing Tools
17

Tracking Tools
17

Buggit
17

TCM
17

Configuration Management
17

Issues Database
17

Task Manager
17

Diagnostic Tools
17

Virus Scan
17

NT Task Manager
17

WinDiff
18

WPS
18

PerfMon
18

SysInfo
18

Wmem
18

Dr.Watson
18

Performance Profiling
18

Complexity Analysis
18

Coverage Analysis
18

Automation Tools
18

Dialog Check
18

Smart Monkey
18

Simulators
18

Visual Test
19

Backend Tools
19

DB Native GUI Tools
19

DB Command Line Tools
19

VB / Access Apps
19

Batch Scripts
19

Schema Comparison Tool
19

Event Viewer
19

Test Data Scrambler
19

Telnet
19

Tool Server Repository
19

Test Environment
20

Hardware
20

Software
20

Personnel
20

Task Manager Monitoring
20

Testing Resource Requests
20

TCM and Buggit Database Standards
21

Test Cases
21

TCM Structure
21

Test Case Contents
22

Name
22

TCID
22

Area
22

Attachments
22

Test Case Details
22

Other Fields:
22

Test Case Writing Guidelines
22

Do’s When Writing Test Cases
22

Do Not’s When Writing Test Cases
23

Bug Documentation
23

Bug Severity and Priority Definition
23

Severity List
23

Priority List
24

Bug Reporting
24

Buggit Bug Entry Fields
24

Bug Type
24

Assigned To
24

Product
24

Status
25

Source
25

Priority
25

Severity
25

Code 1
25

Revision History

Revision
Date
Author
Description of Change

1.0
10/7/97
Matt Pierce
Test Approach created.

Contributors

Names

Matt Pierce

Introduction

This document identifies the Testing Department’s methodology as implemented across all projects. This test approach describes the high-level strategies and methodologies used to plan, organize, and manage testing of software projects within <your company>. This test approach also includes descriptions of <your company> Testing’s role at various phases of the project development cycle.

Quality Objective

Primary Objective

The primary objective of testing application systems is to: identify and expose all issues and associated risks, communicate all known issues to the project team, and ensure that all issues are addressed in an appropriate matter before release. As an objective, this requires careful and methodical testing of the application to first ensure all areas of the system are scrutinized and, consequently, all issues (bugs) found are dealt with appropriately.

Secondary Objective

A secondary objective of testing application systems is to: assure that the system meets the full requirements of the customer, maintain the quality of the product, and remain within the cost range established at the project outset. At the end of the project development cycle, the user should find that the project has met or exceeded all of their expectations as detailed in the requirements. Any changes, additions, or deletions to the requirements document, Functional Specification, or Design Specification will be documented and tested at the highest level of quality allowed within the remaining time of the project and within the ability of the test team.

Test Methodology

Test Stages

Overview

There are four major milestones in the Development cycle: Planning Phase, Design Phase, Development Phase, and Stabilization Phase. The Planning Phase culminates in the completion of the Planning Docs Milestone (Requirements plus Functional Spec). The Design Phase culminates in the completion of the Design Spec and Test Plan / Test Spec. The Development Phase culminates in the Code Complete Milestone. The Stabilization Phase culminates in the Release Milestone.

During the first two phases, testing plays a supporting role, providing ideas and limited testing of the planning and design documents. Throughout the final two stages, testing plays a key role in the project.

Milestone 1 - Planning Phase

During the first phase of the Development Cycle, testing should focus upon the Requirements and Functional Specs. Testing reviews these documents for their comprehensibility, accuracy, and feasibility. Specific tasks that testing may carry out during this phase include:

· Assessing the impact of Requirements on testing.

· Providing metrics factors (preliminary schedule, estimated test case and bug counts, etc.)

· Identifying project infrastructure issues

· Identifying risks related to the testing and development process

Milestone 2 - Design Phase

During the second phase of the Development Cycle, testing is focused upon evaluating the design and is required to produce and distribute its draft Test Plan. To generate the Test Plan, Test Spec, and Test Cases, testing requires that the Requirements, Functional Spec, Design Documents, Business Rules, and Project Plan/Schedule be completed and a copy emailed to the test point person.

During this phase, testing may participate within the design reviews (with development) and have access to the Design Spec under construction. This will help testing better prepare its Test Plan, Test Spec, and Test Cases. The Test Plan defines much of the detailed strategy and specific testing information that will be used for testing the application.

The purpose of the Test Plan is to achieve the following:

· Divide Design Spec into testable areas and sub-areas (do not confuse with more detailed test spec). Be sure to also identify and include areas that are to be omitted (not tested) also.

· Define testing strategies for each area and sub-area.

· Define bug-tracking procedures.

· Define release and drop criteria.

· Define list of configurations for testing.

· Identify testing risks.

· Identify required resources and related information.

· Provide testing Schedule.

Milestone 2a - Usability Testing

The purpose of usability testing is to ensure that the new components and features will function in a manner that is acceptable to the customer. Development will typically create a non-functioning prototype of the UI components to evaluate the proposed design. Usability testing can be coordinated by testing, but actual testing must be performed by non-testers (as close to users as possible). Testing will review the findings and provide the project team with its evaluation of the impact these changes will have on the testing process and to the project as a whole.

Milestone 3 - Developing Phase

During the third phase of the development cycle, testing begins to execute its primary role by identifying issues (bugs). At the beginning of this phase, testing will be spending most of its time generating test cases in TCM. As this phase progresses, however, testing will receive release candidates (builds) of increasing functionality to test. By the time the development phase closes, then, testing will be primarily executing test cases.

Development’s internal releases during this phase ultimately drive toward a static Alpha build (recognized as code-complete). While <your company> Development is working on the code for an interim milestone (builds generated as features completed), <your company> Testing writes the test specification and test cases for that feature set. During this phase, <your company> Development will also be conducting its unit testing (white box testing) prior to every internal release to <your company> Testing.

Milestone 3a - Unit Testing (Multiple)

Unit Testing is conducted by <your company> Development to ensure that proper functionality and code coverage have been achieved by each developer both during coding and in preparation for acceptance into alpha testing. Involvement in unit testing by <your company> Testing during this phase should be in an advisory capacity only. It is the responsibility of <your company> Testing to require that a set level of quality control is adopted and maintained by <your company> Development throughout this phase.

The following areas of the project must be unit-tested and signed-off before being passed on to <your company> Testing:

· Databases, Stored Procedures, Triggers, Tables, and Indexes

· NT Services

· Database conversion

· .OCX, .DLL, .EXE and other binary formatted executables

The exit criteria for this milestone is code-complete. That is, all functionality and logical and physical components of the application must be completed and made available to testing according to the requirements within the drop criteria.

Milestone 3b - Acceptance into Internal Release Testing

Internal releases are issued builds containing new functionality (and may include bug fixes). Before accepting a project for Internal Release Testing, <your company> Testing must be assured that adequate unit testing has been done by <your company> Development. A build must pass the following Build Acceptance Test before moving into Internal Release Testing:

· Sign-off from the development lead that unit testing is complete on all modules released

· Verification that the code is located at a specified drop point.

· Verification that Release Notes accompany the new build (discussion of changes, areas not to test, etc.)

· <your company> Testing can install the build from a SETUP.EXE file located at the drop point

· Verification that all “Build Acceptance Test” test cases (preferable automated) pass thereby indicating that the basic components work

· UI layout freeze has occurred

· Database structure freeze has occurred

Milestone 3c - Internal Release Testing

Internal Release Testing is the evaluation of the *new* UI and functionality that has been incorporated into the new build. Several cycles of Internal Release Testing will occur (every time <your company> Testing receives a new drop of a build). Completion of this phase will occur when code is complete, and subsequent drops of new builds will include only bug fixes with no new feature code.

Internal Release Testing will include:

· Execution of TCM test cases

· Documentation into Buggit of any variations from expected results

· Addition of newly discovered test cases into TCM

Milestone 3d - Acceptance into Alpha Testing

Alpha testing occurs after code complete has been achieved; all subsequent builds throughout alpha will thus consist of bug fixes only. Initial receipt of the application defined as code complete into alpha testing requires that all critical path test cases pass to ensure that general aspects of the application are robust enough to undergo the testing process. The application must be functionally complete. The drop of the application to <your company> Testing should meet the same requirements as any drop criteria (see above).

Passing this milestone indicates that Alpha Testing is ready to commence. Failure into acceptance requires that the drop be rejected back to <your company> Development. This would only occur in only two instances: one, where the drop criteria had not been properly met; or two, when a bug of sufficient severity prevents running test cases against the application.

Milestone 3e - Alpha Testing

During the repeated cycles of identifying bugs and taking receipt of new builds (containing bug fix code changes), there are several processes which are common to this phase across all projects. These include the various types of tests: functionality, performance, stress, configuration, etc. There is also the process of communicating results from testing and ensuring that new drops contain stable fixes (regression). The project should plan for a minimum of 3-4 cycles of testing (drops of new builds) in this phase with 6-8 for even the best development teams.

Throughout the course of alpha testing, frequent and regular triage meetings shall be held with the project team (more frequent than in previous phases of the development cycle). <your company> testing shall present their bug findings as recorded within the project Buggit database. The objective of the triage meeting is to determine priorities for bug fixes.

Milestone 4 - Stabilization Phase

During the fourth and final stage of the Development Cycle, <your company> Testing performs most of the work (relative to other groups). Here is where testing resource loading is at its peak. Upon entering this phase, the application has been internally tested module by module, and has undergone alpha testing cycles.

The objective of this phase is to arrive at the Release Milestone with a robust release candidate (build). There is still an emphasis on <your company> Testing to continue to identify issues (bugs) and regress the bug fixes. All project members, plus tech support colleagues may become involved in this process during this phase.

Milestone 4a - Acceptance into Beta Testing

Upon entering this milestone, <your company> Testing must provide a brief report indicating testing results to date. Specifically, the report must show that to the best degree achievable during the alpha testing phase, all identified severity 1 and severity 2 bugs have been communicated and addressed. At a minimum, all priority 1 and priority 2 bugs should be resolved prior to entering the beta phase.

Important deliverables required for acceptance into beta testing include:

· Application SETUP.EXE

· Installation instructions

· All documentation (beta test scripts, manuals or training guides, etc.)

Milestone 4b - Beta Testing

This milestone process is typically conducted by the User Education / Training Department (Greg Linaker, John Nicholls, …), and a selected user group. <your company> Testing participates in this milestone process as well by providing confirmation feedback on new issues uncovered, and input based on identical or similar issues detected earlier. The intention is to verify that the product is ready for distribution, acceptable to the customer and iron out potential operational issues. It is a resource intensive process in which Training cooperates with Product Management to develop a focused Acceptance Test Plan specifying the objectives, scope and duration of the Beta phase.

Throughout the beta test cycle, bug fixes will be focused on minor and trivial bugs (severity 3 and 4). <your company> Testing will continue its process of verifying the stability of the application through regression testing (existing known bugs, as well as existing test cases). <your company> Testing will also assist with confirmation feedback to beta test results (yes it is a bug, yes development is working on a fix, etc.)

The milestone target of this phase is to establish that the application under test has reached a level of stability, appropriate for its usage (number users, etc.), that it can be released to the client users.

Milestone 4c - Release to Manufacturing (RTM)

Release to manufacturing for production an occur only after the successful completion of the application under test throughout all of the phases and milestones previously discussed above. The milestone target is to place the release candidate (build) into production after it has been shown that the app has reached a level of stability that meets or exceeds the client expectations as defined in the Requirements, Functional Spec., and <your company> Production Standards (not yet in existence).

<your company> Testing will ensure that the Gold Release Set passes the following test cases:

· Check for extra or missing files (Diff operation on directory).

· Proper date stamps on all files (Diff operation on directory).

· Binary comparison of source files (\Windows\Command\fc.exe operation on file).

· Installation test on clean machine one more time.

· Basic functionality test (use automated smoke tests).

Milestone 4d - Post Release

During this phase, testing archives all project documents, notes, test-ware (automation scripts, etc.), email, source code, etc. Archiving is the responsibility of the Test Lead. Testing also prepares a post-implementation review document discussing the testing process throughout the development cycle.

Test Levels

Testing of an application can be broken down into three primary categories and several sub-levels. The three primary categories include tests conducted every build (Build Tests), tests conducted every major milestone (Milestone Tests), and tests conducted at least once every project release cycle (Release Tests). The test categories and test levels are defined below:

Build Tests

Level 1 - Build Acceptance Tests

Build Acceptance Tests should take less than 2-3 hours to complete (15 minutes is typical). These test cases simply ensure that the application can be built and installed successfully. Other related test cases ensure that <your company> Testing received the proper Development Release Document plus other build related information (drop point, etc.). The objective is to determine if further testing is possible. If any Level 1 test case fails, the build is returned to developers un-tested.

Level 2 - Smoke Tests

Smoke Tests should be automated and take less than 2-3 hours (20 minutes is typical). These tests cases verify the major functionality a high level. The objective is to determine if further testing is possible. These test cases should emphasize breadth more than depth. All components should be touched, and every major feature should be tested briefly by the Smoke Test. If any Level 2 test case fails, the build is returned to developers un-tested

Level 2a - Bug Regression Testing

Every bug that was “Open” during the previous build, but marked as “Fixed, Needs Re-Testing” for the current build under test, will need to be regressed, or re-tested. Once the smoke test is completed, all resolved bugs need to be regressed. It should take between 5 minutes to 1 hour to regress most bugs.

Milestone Tests

Level 3 - Critical Path Tests

Critical Path test cases must pass by the end of every 3-5 Build Test Cycles. Critical Path test cases are targeted on features and functionality that the user will see and use every day. They do not need to be tested every drop, but must be tested at least once per milestone. Thus, the Critical Path test cases must all be executed at least once during the Alpha cycle, and once during the Beta cycle.

Release Tests

Level 4 - Standard Tests

Test Cases that need to be run at least once during the entire test cycle for this release. These cases are run once, not repeated as are the test cases in previous levels. Functional Testing and Detailed Design Testing (Functional Spec and Design Spec Test Cases, respectively). These can be tested multiple times for each Milestone Test Cycle (alpha, beta, etc.).

Standard test cases usually include Installation, Data, GUI, and other test areas.

Level 5 - Suggested Test

These are Test Cases that would be nice to execute, but may be omitted due to time constraints.

Most Performance and Stress Test Cases are classic examples of Suggested test cases (although some should be considered standard test cases). Other examples of suggested test cases include WAN, LAN, Network, and Load testing.

Bug Regression

Bug Regression will be a central tenant throughout all testing phases. All bugs that are resolved as “Fixed, Needs Re-Testing” will be regressed when <your company> Testing is notified of the new drop containing the fixes. When a bug passes regression it will be considered “Closed, Fixed”. If a bug fails regression, <your company> Testing will notify <your company> development by entering notes into Buggit. When a Severity 1 bug fails regression, <your company> Testing should also put out an immediate email to development. The Test Lead will be responsible for tracking and reporting to development and product management the status of regression testing.

It is recommended that a separate cycle of regression testing occur at the end of each phase to confirm the resolution of Severity 1 and 2 bugs (yes, re-test them again). The scope of this last cycle should be determined by the test point person and product management (regress all Severity 1 and 2, 50% of, 40% of, etc.)

Bug Triage

Bug Triages will be held throughout all phases of the development cycle. Bug triages will be the responsibility of the Test Lead. Triages will be held on a regular basis with the time frame being determined by the bug find rate and project schedules. Thus, it would be typical to hold few triages during the Planning phase, then maybe one triage per week during the Design phase, ramping up to twice per week during the latter stages of the Development phase. Then, the Stabilization phase should see a substantial reduction in the number of new bugs found, thus a few triages per week would be the maximum (to deal with status on existing bugs).

The Test Lead, Product Manager, and Development Lead should all be involved in these triage meetings. The Test Lead will provide required documentation and reports on bugs for all attendees. The purpose of the triage is to determine the type of resolution for each bug and to prioritize and determine a schedule for all “To Be Fixed Bugs’. Development will then assign the bugs to the appropriate person for fixing and report the resolution of each bug back into the Buggit system. The Test Lead will be responsible for tracking and reporting on the status of all bug resolutions.

Suspension Criteria and Resumption Requirements

Testing will be suspended on the affected software module when Smoke Test (Level 1) or Critical Path (Level 2) test case bugs are discovered. A bug report will be filed in Buggit and <your company> Development and Product Management will be notified. After fixing the bug, <your company> Development will follow the drop criteria (described above) to provide its latest drop to <your company> Testing. At that time, <your company> Testing will regress the bug, and if passes, continue testing the module.

Notice that some discretion is in order here on the part of the Test Lead. To suspend testing, the bug had better be reproducible, it had better be clearly defined, and it had better be significant.

Test Completeness

Testing will be considered complete when the following conditions have been met:

Standard Conditions:

· When <your company> Testing, <your company> Development, <your company> Program Management, and <your company> Product Management agree that testing is complete, the app is stable, and agree that the application meets functional requirements.

· Script execution of all test cases in all areas have passed.

· Automated test cases have in all areas have passed.

· All priority 1 and 2 bugs have been resolved and closed.

· Each test area has been signed off as completed by the Test Lead.

· 50% of all resolved severity 1 and 2 bugs have been successfully re-regressed as final validation.

· Ad hoc testing in all areas has been completed.

Bug Reporting & Triage Conditions:

· Bug find rate indicates a decreasing trend prior to Zero Bug Rate (no new Sev. 1/2/3 bugs found).

· Bug find rate remains at 0 new bugs found (Sev. 1/2/3) despite a constant test effort across 3 or more days.

· Bug severity distribution has changed to a steady decrease in Sev. 1 and 2 bugs discovered.

· No ‘Must Fix’ bugs remaining prior despite sustained testing.

Test Deliverables

Testing will provide specific deliverables during the project. These deliverables fall into three basic categories: Documents, Test Cases / Bug Write-ups, and Reports. Here is a diagram indicating the dependencies of the various deliverables:

As the diagram above shows, there is a progression from one deliverable to the next. Each deliverable has its own dependencies, without which it is not possible to fully complete the deliverable.

The following page contains a matrix depicting all of the deliverables that Testing will use.

Deliverables Matrix

This matrix should be updated routinely throughout the project development cycle in you project specific Test Plan.

Deliverable
Milestone
Sign-Off

Documents

 Test Approach
Planning

 Test Plan
Design

 Test Schedule
Design

 Test Specifications
Development

Test Case / Bug Write-Ups

 TCM Test Cases / Results
All

 TCM Coverage Reports
All

 Buggit Bugs and Regression Results
All

 Buggit Analyzer Bug Reports
All

Reports

 Weekly Status Reports
All

 Phase Completion Reports
All

 Test Final Report - Sign-Off
Stabilization

 CD Archive
Stabilization

Documents

Test Approach Document

The Test Approach document is derived from the Project Plan, Requirements and Functional Specification documents. This document defines the overall test approach to be taken for the project. The Standard Test Approach document that you are currently reading is a boilerplate from which the more specific project Test Approach document can be extracted.

When this document is completed, the Test Lead will distribute it to the Product Manager, Development Lead, User Representative, Program Manager, and others as needed for review and sign-off.

Test Plan

The Test Plan is derived from the Test Approach, Requirements, Functional Specs, and detailed Design Specs. The Test Plan identifies the details of the test approach, identifying the associated test case areas within the specific product for this release cycle. When this document is completed, the Test Lead will distribute it to <your company> Product Management and <your company> Development for sign-off.

The purpose of the Test Plan document is to:

· Specify the approach that Testing will use to test the product, and the deliverables (extract from the Test Approach).

· Break the product down into distinct areas and identify features of the product that are to be tested.

· Specify the procedures to be used for testing sign-off and product release.

· Indicate the tools used to test the product.

· List the resource and scheduling plans.

· Indicate the contact persons responsible for various areas of the project.

· Identify risks and contingency plans that may impact the testing of the product.

· Specify bug management procedures for the project.

· Specify criteria for acceptance of development drops to testing (of builds).

Test Schedule

The Test Schedule is the responsibility of the Test Lead (or Department Scheduler, if one exists) and will be based on information from the Project Scheduler (done by Product Manager). The project specific Test Schedule will be done in MS Project.

Test Specifications

A Test Specification document is derived from the Test Plan as well as the Requirements, Functional Spec., and Design Spec documents. It provides specifications for the construction of Test Cases and includes list(s) of test case areas and test objectives for each of the components to be tested as identified in the project’s Test Plan.

Test Case / Bug Write-Ups

TCM Test Cases

Test Cases will be documented in TCM (Access database utility, contact alias ‘tcm’ for assistance). Test Cases are developed from the Test Specifications, Functional Spec., and Design Spec. Test Cases are detailed at the lowest level of complexity. Results will be tracked as either Pass or Fail in the TCM database. There must be an associated Buggit bug for every Failed Test Case.

TCM Coverage Reports

Test Case Coverage Reports will provide the current status of test cases and pass/fail information. The reports can breakdown the status information across the different test case areas, by level (Smoke, Critical Path, Standard, Suggested, etc.), and in other formats.

Buggit Bugs and Regression Results

Bugs found will be documented and tracked in the company-wide Buggit system. There will be an associated Test Case (in TCM) for every Buggit bug written. Standards for writing up bugs are detailed in a later section entitled TCM and Buggit Database Standards section of this document.

Buggit Analyzer Bug Reports

Reports from the Buggit Analyzer Bug Reports will be used to communicate information on all bugs to appropriate project personnel.

Reports

The Test Lead will be responsible for writing and disseminating the following reports to appropriate <your company> project personnel as required.

Weekly Status Reports

A weekly status report will be provided by the Test Lead to project personnel. This report will summarize weekly testing activities, issues, risks, bug counts, test case coverage, and other relevant metrics.

Phase Completion Reports

When each phase of testing is completed, the Test Lead will distribute a Phase Completion Report to the Product manager, Development Lead, and Program Manager for review and sign-off.

The document must contain the following metrics:

· Total Test Cases, Number Executed, Number Passes / Fails, Number Yet to Execute

· Number of Bugs Found to Date, Number Resolved, and Number still Open

· Breakdown of Bugs by Severity / Priority Matrix

· Discussion of Unresolved Risks

· Discussion of Schedule Progress (are we where we are supposed to be?)

Test Final Report - Sign-Off

A Final Test Report will be issued by the Test Lead. It will certify as to the extent to which testing has actually completed (test case coverage report suggested), and an assessment of the product’s readiness for Release to Production.

CD Archive

Once a project release cycle has been completed, all source code, documentation (including requirements, functional spec, design spec, test plan, etc.), all testware automation, etc. should be archived onto a CD for permanent storage.

Responsibility Matrix

Task
Prog
Mgmt
Dev
Test
Prod.

Mgmt

Project Plan
S

P

Project Schedule
P

S

Requirements
S

P

Functional Specification
S

P

Detailed Design Specification

P

Test Approach

P

Test Plan

P

Test Schedule

P

User Acceptance Test Plan (Beta)
S

S
P

TCM Test Cases & Results

P

TCM Coverage Reports

P

Buggit Bugs

P

Buggit Bug Analyzer

P

Weekly Status Reports
P
P
P
P

Test Final Report

P

CD Archive

P

P - Primary; S - Secondary

Resource & Environment Needs

Testing Tools

Tracking Tools

Buggit

Buggit is used by <your company> to enter and track all bugs and project issues. Eventually, there will also be an Buggit Analyzer bug reporting tool that gives meaningful bug reports. The Test Lead is responsible for maintaining the Buggit database (meaning the quality of bug reports—not the actual dba chores). The Test Lead will use the Buggit Analyzer reporting tool (once built) to keep the project management appraised of the bugs associated with the project.

TCM

Test Case Manager (TCM) will be Used to track status of test cases, avoid duplication of efforts (re-use test cases with slight modification) by <your company> Testing. The Test Lead is responsible for managing the TCM database. A TCM database will be created for the project by the TCM Administrator upon your request (email request to ‘tcm’ via Exchange forms). More detailed information regarding TCM will be presented in the TCM Database Standards section later in this document.

Configuration Management

<your company> Development and <your company> Testing will use Visual Source Safe (or sim. Prod.) to save test cases

and test plans, as well as, look for code changes, churn rate, version control, etc.

Issues Database

All projects will have issues that do not belong in the bug tracking system, but nonetheless need to be dealt with. Too often this issues are not written down, and are thus forgotten in the verbal maze of “go-do’s”. Thus, we will at some point build a tool to track RFI’s (Request For Information), COP’s (Change Order Proposals are RFI’s that have a schedule or cost impact), and CO’s (Change Orders are COP’s which have been approved). Until then, just put the issues into Buggit as a suggested bug.

Task Manager

Every tester should plan and track their time as tasks in the Task Manager utility. This way, the Test Lead and Test Manager can easily see where time was spent, how much various tasks cost and how long they took to perform, etc. The metrics generated from the Task Manager tool easily roll forward into project schedules in the future.

Diagnostic Tools

Virus Scan

Use F-Prot or similar virus scanner to check master disk sets. Scan test machines periodically. Releasing a product with viruses embedded would be a severe bug.

NT Task Manager

Tracks resource usage, threads, performance, etc. This tool is excellent for diagnosing memory leaks (RAM meter loses memory over time), finding performance bottlenecks, etc.

WinDiff

Compare file differences. Registry Dumps, Dir c:*.* /s, or ini file snapshot changes over time—take snapshots both before and after broken state occurs…then compare. (or use fc.exe f/NT too).

WPS

Debug tool that lists all modules loaded into memory at a given point. (Applet comes with Windows NT.) Save list and WinDiff multiple lists over time, or across O.S.’s.

PerfMon

NT Performance Monitor. Check out processor, RAM, disk access, network, server performance. (In NT4.0, type ‘diskperf’ at command prompt to activate disk stats after reboot.

SysInfo

MSOffice app that lists all info about currently loaded modules in memory. (Comes with MSOffice.)

Wmem

Checks system resources (user & GDI) and memory used by loaded apps.
Dr.Watson

This is debug tool that lists machine configuration, task list, module list, stack dump.

Performance Profiling

This tool is used to determine where bottlenecks occur in code, etc. Built-into VB4.0 Enterprise. This is primarily a white box or unit testing tool that <your company> Testing will not use.

Complexity Analysis

Cyclomatic complexity metric, Mccabe’s metric, etc. to determine complexity of source code. This is primarily a white box or unit testing tool that <your company> Testing will not use.

Coverage Analysis

This tool ensures that testing hit all lines code, all functions, etc.

Automation Tools

Dialog Check

This Visual Test tool runs a standard battery of tests against dialog boxes. It looks for Windows Standards non-compliance issues.

Smart Monkey

Smart Monkeys are an excellent tool for quickly automating. Because smart monkeys take a random sampling of the state of the app under test, they can be used to calculate a realistic MTBF (Mean Time Between Failure) metric.

Simulators

While testing modules, can use drivers or other simulators to provide inputs to functions / apps being tested. VB Code = good tool to use for this function.

Visual Test

Use Visual Test for Automation where appropriate (read: repeatable). We have to be very careful not to be trapped into the allure of automating everything. It is most valuable to automate Smoke Tests, and many Critical Path Tests as they are repeated the most.

Backend Tools

DB Native GUI Tools

Be certain that you know your DB GUI tools cold. Enterprise Manager, Security Manager, NT User Manager for Domains, and other tools are used for SQL Server. Oracle also has some GUI tools that should be used to facilitate learning the database, learning your project’s schema, etc.

DB Command Line Tools

ISQL is used for SQL Server. SrvMgr, SQL Plus and other tools are used for Oracle. These command line utilities let you write and execute SQL to manipulate the database and view or change the data. You can also use the command line tools in batch processes.

VB / Access Apps

Use VB or Access to create utilities to test out the back-end data on your projects. One example might be a Data Validation utility that when loaded automatically runs a battery of test case queries, logging the results into a database of errors.

Batch Scripts

Batch scripts can be incredibly powerful. You can run long processes overnight that process data, move data, etc. Testing can routinely execute Business Rule Enforcement scripts that look for records that slip through the cracks and wind up in production.

Schema Comparison Tool

Routinely run a Schema Comparison script to rapidly isolate changes in a schema over time, or across servers. Change in schemas is almost always the root cause of new, inexplicable errors.

Event Viewer

Look at NT Event Viewer for a history of silent errors.

Test Data Scrambler

Generating test data is an important part of testing that often goes undone. Testing will soon build a tool that randomly scrambles data (names, id’s, ssn’s, etc.) so that our test data retains the richness of real production data without the liability of security issues. This tool will be useful to DA’s, trainers and testers.

Telnet

When working with UNIX boxes (Merlin, Arthur, and other DEC boxes), use Telnet to connect in and run UNIX commands. PMON is a very useful utility for testers.

Tool Server Repository

These testing tools will eventually all be placed out on a central Tool Server web page that ‘matpie’ will create in the near future. Discussion of those tools as well as installation drop points will be on the intranet at that time.

Test Environment

Hardware

Testing will have access control to one or more application/database servers separate from any used by non-test members of the project team. Testing will also have access control to an adequate number of variously configured PC workstations to assure testing a range from the minimum to the recommended client hardware configurations listed in the project’s Requirements, Functional Specification and Design Specification documents.

Software

In addition to the application and any other customer specified software, the following list of software should be considered a minimum:

· NT Workstation 4.0 or Windows 95.

· MS Office 95 Professional

· MS Exchange

· TCM (Testing Tool Server)

· Task Manager (Testing Tool Server)

Personnel

Task Manager Monitoring

Testers should use the Task Manager application to build a structured tree of projects and associated tasks. Then, at the end of each day it is recommended that testers log the time they spent working that day into the appropriate tasks. From this time related data, management can get extremely accurate pictures of where time and money is being spent…on what tasks across which projects? At the end of each project cycle, the metrics generated from the Task Manager are indispensable for setting up subsequent schedules, looking for where the trouble areas were (for improvement next time), etc.

Testing Resource Requests

Testing resource staffing will be managed by the Test Lead and the Test Manager. Where appropriate, the use of contractors may be implemented when resource loads are strained because several projects are coming due at once.

It is mandatory that the Test Lead fill out the Test Complexity Matrix as part of the Resource Allocation process. This Complexity Matrix yields an estimate of the complexity of the product under test relative to other products. This information can be extremely helpful when planning resource loads during project startup. Some metrics that feed into the quotient include number of forms, number of tables, number of stored procedures, number of functions performed, etc.

TCM and Buggit Database Standards

<your company> Testing has defined standards for the structure of and entry of data into both TCM and Buggit. These standards will be adhered to in all projects.

Please review the TCM Mini User’s Manual, and TCM Design Spec for further details on TCM. Please review your Buggit User’s Guide for additional information on this bug tracking system.

Test Cases

<your company> Testing’s test cases will be entered and administered in Test Case Manager (TCM). The Test Lead will be responsible for the maintenance of TCM. Testing will track and report the success or failure of the test cases. Tracking of test cases will include when tests were run, by whom, and code version/build number as well as any comments logged after the test case was run. The Test Lead will provide project management with reports.

TCM Structure

One of the most important parts of developing a TCM database is to plan the layout of the various areas (breakdown). The primary goal of the layout is to provide a structure that will be immediately obvious to a tester familiar with the product. We suggest that you use the Test Specification Breakdown to define your TCM Area breakdown.

Here is a general format for a project TCM Tree of Areas:

Test Spec Area 1

Sub Area 1

Component/Functionality 1

Component/Functionality N

Sub Area N

Test Spec Area N

1. Test Spec Area: A Test Spec Area defines high level aspects of the testing approach. Examples would include, “Data,” “Installation,” “Features/Functionality”, “User Interface,” “Performance,” “Stress/Load,” etc.

2. Sub Area: Typically defines modules within an application. Examples would include Form Names for Features / Functionality or UI Test Spec Areas. Other examples would include separate utilities for installation, database names or distinction between tables/indices/stored procedures/etc. for backend data testing, etc.

3. Component/Functionality: Defines functions or components specific to the Sub Area to which it belongs. Examples would include menu items and controls on a form, or features executed from a form, etc. Notice that there can be multiple sub-levels of Functionality broken down here (not just level 3, but beyond to level 4, 5, etc.).

4. Test Cases: The Test Cases will be stored under the last level of the tree. These are the actual test scripts (manual repro steps) that the testers carry out.

These are just the suggested breakdown structure components. Some testers might feel more comfortable breaking an entire project database down by component (e.g.: Explore would have the Standard Tool, CSS, PPR, etc.); then by typical Test Spec Area (Performance, Installation, Data, etc.). Use whatever breakdown will best suit your objective.

When you are first shipped your TCM project database, your will find it setup with several default areas. You can also request several generic Test Cases also to make a quicker project setup.

Test Case Contents

Name

The first entry box in the test case window is that of test case Name. The name should be a brief description of the test case’s purpose (we suggest copying the Objective section from below).

TCID

This field is automatically generated by the application. It becomes the Test Case Number, and you can not alter it.

Area

This is an important field that identifies to which area of the tree a test case belongs. The value is defaulted to the current location at the time the user clicked the “Add Test Case” button from the “Test Case Manager” form. Even though this field is grayed out, you can alter its contents to move a test case from one area to another within the TCM Breakdown Tree.

Attachments

This command button will pop up a dialog box into which you can easily load attachments (XL spreadsheets, etc.) or add attachments to the test case.

Test Case Details

This is the heart and soul of a test case. It is very important that the standard be followed when writing up this section of a test case (because it will be copy and pasted into the bug tracking system). Below is a listing of the standard test case details format:

· Objective: Required field. Should also be used as test case title. This section lists the focus of the test case—what part of the software will be tested. Why are we spending resources building and executing this test case?

· Setup Steps: Optional field. This section lists all steps necessary to setup the application before the actual reproduction steps are performed. This is where you describe the assumed start point for repro steps below (e.g.: app is running, form “xx” is on top, etc.).

· Repro Steps: Required field. This section lists the minimal steps necessary to test the objective above.

· Expected Results: Required field. This section states the result expected after executing the repro steps. This needs to be a direct answer to the Objective section above.

Other Fields:

There are other fields on this test case entry form. These fields are self-explanatory and will not be further discussed here. Those fields include: “Author,” “Level,” “Status,” etc.

Test Case Writing Guidelines

Do’s When Writing Test Cases

· DO Have one “Verify” statement per test case (at the objective line).

· DO Write each case to be executed standalone. It shouldn’t depend on other test cases.

· DO Break down the app and write steps to the functionality. This eliminates constant rework of the test cases when code changes.

· DO think re-usable scripts when writing your test cases.

Do Not’s When Writing Test Cases

· DO NOT use the words “correctly”, “as it should”, “properly” or other value statements. Define the expected behavior.

· DO NOT use test files or other attachments unless clearly helpful. If so, try to have the creation of the test file be part of the test case. Also, TCM gives you the option to save the file as an Attachment to the test case—use it with care so as not to bloat the file server (test data, etc. are valid uses).

· DO NOT give setup or repro steps unless they are necessary. In other words, if the test case should start off at a well known form, then just list that one step in the setup steps (start at form X). You do not need to list all the steps to get to that form too, unless it is an obscure dialog and it would help new users.

Bug Documentation

All bugs will be documented in Buggit. The Buggit description will follow the <your company> test case / bug write-up standard (included below). The Test Lead will be responsible for the maintenance of the Buggit database and bugs therein. All necessary project team members should have access to Buggit.

Every bug entered into Buggit will have an associated TCM test case number associated with it. Where a bug does not fit into an existing test case, a new test case will be created and its number referenced in the Buggit bug entry. The new test case will have the ‘ADHOC’ flag set to true. Older cases may be updated to extend their potential for catching the new bug as long as it doesn’t significantly alter the objective of the original test case. In the event that a bug is found by a person outside if <your company> Testing, the bug should be reported to the Test Lead who will then assure that further testing is completed to verify the existence of the bug, refine the repro steps, incorporate it into TCM, and add it to Buggit.

Bug Severity and Priority Definition

Bug Severity and Priority fields are both very important for categorizing bugs and prioritizing if and when the bugs will be fixed. The bug Severity and Priority levels will be defined as outlined in the following tables below. Testing will assign a severity level to all bugs. The Test Lead will be responsible to see that a correct severity level is assigned to each bug.

The Test Lead, Development Lead and Program Manager will participate in bug review meetings to assign the priority of all currently active bugs. This meeting will be known as “Bug Triage Meetings”. The Test Lead is responsible for setting up these meetings on a routine basis to address the current set of new and existing but unresolved bugs.

Severity List

The tester entering a bug into Buggit is also responsible for entering the bug Severity.

Severity ID
Severity Level
Severity Description

1
Crash
The module/product crashes or the bug causes non-recoverable conditions. System crashes, GP Faults, or database or file corruption, or potential data loss, program hangs requiring reboot are all examples of a Sev. 1 bug.

2
Major
Major system component unusable due to failure or incorrect functionality. Sev. 2 bugs cause serious problems such as a lack of functionality, or insufficient or unclear error messages that can have a major impact to the user, prevents other areas of the app from being tested, etc. Sev. 2 bugs can have a work around, but the work around is inconvenient or difficult.

3
Minor
Incorrect functionality of component or process. There is a simple work around for the bug if it is Sev. 3.

4
Trivial
Documentation errors or signed off severity 3 bugs.

Priority List

Priority ID
Priority Level
Priority Description

1
Must Fix
This bug must be fixed immediately, the product cannot ship with this bug.

2
Should Fix
These are important problems that should be fixed as soon as possible. It would be an embarrassment to the company if this bug shipped.

3
Fix When Have Time
The problem should be fixed within the time available. If the bug does not delay shipping date, then fix it.

4
Low Priority
It is not important (at this time) that these bugs be addressed. Fix these bugs after all other bugs have been fixed.

Bug Reporting

<your company> Testing recognizes that the bug reporting process is a critical communication tool within the testing process. Without effective communication of bug information and other issues, the development and release process will be negatively impacted.

The Test Lead will be responsible for managing the bug reporting process. Testing’s standard bug reporting tools and processes will be used. Buggit is the company-wide standard Bug Logging / Tracking tool. Testing and development will enter their data into the Buggit database following the field entry definitions defined below.

Buggit Bug Entry Fields

Bug Type

This field indicates what bug type was discovered. Bug types include:

· Documentation: bugs are those found in help files, user’s manuals, training guides, etc.

· System Crash: bugs are those that cause the application or the entire operating system to crash. These generally warrant a Severity 1 rating.

· Trappable Errors: are bugs that pop up an error box, but do not necessarily crash the application. These generally warrant a Severity 2 bug (although occasionally a Sev 1 is appropriate).

· User Interface: bugs are those found in the graphical layout of the application. They typically include bugs such as controls that are not aligned, do not work, do the wrong action, etc.

· Hardware: bugs are those that an operation works with one set of hardware but fails under another hardware scenario.

· Erroneous Output: bugs are those in which reports have errors, data is processed incorrectly, etc.

· Suggestion: These *are* bugs that can not be objectively identified, but rather are subjective opinions from experts (testers) as to how a product can be improved.

Assigned To

This field contains a list of the names of the project team members to whom the bug is currently assigned. The person(s) in this field are expected to be doing their part to resolve the bug.

Product

This field contains the name of the product under test from which the bug was born. A drop list provides the user with all permissible options.

Status

This field indicates the current bug status. The permissible values include:

· New: status indicates a bug that was just discovered.

· Under Review: status indicates a bug that is being reviewed and fixed by development.

· Testing In Progress: status indicates a bug that is being re-tested, but will take time, or is awaiting some criteria before it can be re-tested.

· Needs Re-Test: status indicates a bug that has been fixed and is awaiting re-testing.

· Re-Review: status indicates a bug that was fixed, re-tested, and found to still contain the error.

· Closed: status indicates a bug that has been fixed, re-tested and passes verification. Yeah! The bug is fixed.

· Temp Deferred: status indicates a bug that has been deferred until the patch release, etc.

Source

This field indicates who found the bug: Testing, Technical Support, or Other.

Priority

This field is a numeric indication of the importance of fixing a bug. It is typically set during bug triages in accordance with <your company> Testing’s Bug Fix Priority definitions (described earlier in this document). Values range from Low, to Medium (Should Fix), to High Priority (Must Fix).

Severity

This field is a numeric indication of the importance of the significance which Testing places on this bug. Permissible values include 1 (Crash), 2 (Major), 3 (Minor), and 4 (Trivial). The Severity ratings are described earlier in this document.

Code 1

· Deferred: outcome indicating that bug will be deferred until next release (postponed).

· By Design: outcome indicating that bug was intended to act that way, and expected value is in fact the same as actual value (thus, tester’s assertions for expected values were erroneous).

· Duplicate: outcome indicating that bug already exists.

· Fixed: status indicating that bug has been fixed.

· Not a Bug: outcome indicating that bug was not truly a bug at all.

· Not Reproducible: outcome indicating that bug was unable to be reproduced.

· Suggestion: outcome indicating that bug is a suggestion that will not be implemented.

- 26 -

