
TEST101

Class Lecture Notes

101- Testing Computer Software

Last Updated: 10/30/97

�
Table of Contents
� TOC \o "1-3" �Table of Contents	� GOTOBUTTON _Toc402862917 � PAGEREF _Toc402862917 �2��
Test Approach Document	� GOTOBUTTON _Toc402862918 � PAGEREF _Toc402862918 �10��
Introduction	� GOTOBUTTON _Toc402862919 � PAGEREF _Toc402862919 �10��
Quality Objective	� GOTOBUTTON _Toc402862920 � PAGEREF _Toc402862920 �10��
Test Methodology	� GOTOBUTTON _Toc402862921 � PAGEREF _Toc402862921 �10��
Test Stages	� GOTOBUTTON _Toc402862922 � PAGEREF _Toc402862922 �10��
Test Levels	� GOTOBUTTON _Toc402862923 � PAGEREF _Toc402862923 �11��
Build Tests	� GOTOBUTTON _Toc402862924 � PAGEREF _Toc402862924 �11��
Milestone Tests	� GOTOBUTTON _Toc402862925 � PAGEREF _Toc402862925 �11��
Release Tests	� GOTOBUTTON _Toc402862926 � PAGEREF _Toc402862926 �11��
Bug Regression	� GOTOBUTTON _Toc402862927 � PAGEREF _Toc402862927 �11��
Bug Triage	� GOTOBUTTON _Toc402862928 � PAGEREF _Toc402862928 �12��
Suspension Criteria Resumption Requirements	� GOTOBUTTON _Toc402862929 � PAGEREF _Toc402862929 �12��
Test Completeness	� GOTOBUTTON _Toc402862930 � PAGEREF _Toc402862930 �12��
Component Testing	� GOTOBUTTON _Toc402862931 � PAGEREF _Toc402862931 �12��
Front End	� GOTOBUTTON _Toc402862932 � PAGEREF _Toc402862932 �12��
Back-End	� GOTOBUTTON _Toc402862933 � PAGEREF _Toc402862933 �13��
Integration Testing	� GOTOBUTTON _Toc402862934 � PAGEREF _Toc402862934 �13��
Unit Testing	� GOTOBUTTON _Toc402862935 � PAGEREF _Toc402862935 �13��
Design Testing	� GOTOBUTTON _Toc402862936 � PAGEREF _Toc402862936 �13��
Areas Not Covered	� GOTOBUTTON _Toc402862937 � PAGEREF _Toc402862937 �13��
Acceptance Criteria	� GOTOBUTTON _Toc402862938 � PAGEREF _Toc402862938 �13��
Test Deliverables	� GOTOBUTTON _Toc402862939 � PAGEREF _Toc402862939 �13��
Deliverables Diagram	� GOTOBUTTON _Toc402862940 � PAGEREF _Toc402862940 �13��
Deliverables Matrix	� GOTOBUTTON _Toc402862941 � PAGEREF _Toc402862941 �13��
Document Deliverables	� GOTOBUTTON _Toc402862942 � PAGEREF _Toc402862942 �14��
Test Case / Bug Write-Ups	� GOTOBUTTON _Toc402862943 � PAGEREF _Toc402862943 �14��
Reports	� GOTOBUTTON _Toc402862944 � PAGEREF _Toc402862944 �14��
Responsibility Matrix	� GOTOBUTTON _Toc402862945 � PAGEREF _Toc402862945 �14��
Testing Tools	� GOTOBUTTON _Toc402862946 � PAGEREF _Toc402862946 �15��
Tracking Tools	� GOTOBUTTON _Toc402862947 � PAGEREF _Toc402862947 �15��
Diagnostic Tools	� GOTOBUTTON _Toc402862948 � PAGEREF _Toc402862948 �15��
Automation Tools	� GOTOBUTTON _Toc402862949 � PAGEREF _Toc402862949 �15��
Back-End Tools	� GOTOBUTTON _Toc402862950 � PAGEREF _Toc402862950 �15��
Tool Server	� GOTOBUTTON _Toc402862951 � PAGEREF _Toc402862951 �16��
Test Environment	� GOTOBUTTON _Toc402862952 � PAGEREF _Toc402862952 �16��
Personnel	� GOTOBUTTON _Toc402862953 � PAGEREF _Toc402862953 �16��
TCM and ONYX Database Standards	� GOTOBUTTON _Toc402862954 � PAGEREF _Toc402862954 �16��
Test Cases	� GOTOBUTTON _Toc402862955 � PAGEREF _Toc402862955 �16��
Bugs	� GOTOBUTTON _Toc402862956 � PAGEREF _Toc402862956 �16��
Bug Entry Fields	� GOTOBUTTON _Toc402862957 � PAGEREF _Toc402862957 �17��
Quiz #1 - Test Approach Document	� GOTOBUTTON _Toc402862958 � PAGEREF _Toc402862958 �18��
Chapter #1 - Introduction to Testing	� GOTOBUTTON _Toc402862959 � PAGEREF _Toc402862959 �20��
Introduction	� GOTOBUTTON _Toc402862960 � PAGEREF _Toc402862960 �20��
Example Test Series	� GOTOBUTTON _Toc402862961 � PAGEREF _Toc402862961 �20��
Overview	� GOTOBUTTON _Toc402862962 � PAGEREF _Toc402862962 �20��
Test Cycle 1	� GOTOBUTTON _Toc402862963 � PAGEREF _Toc402862963 �20��
Step 1 - Start with Simple Test	� GOTOBUTTON _Toc402862964 � PAGEREF _Toc402862964 �20��
Step 2 - Notes Regarding Other Areas to Test	� GOTOBUTTON _Toc402862965 � PAGEREF _Toc402862965 �20��
Step 3 - Check Valid Cases	� GOTOBUTTON _Toc402862966 � PAGEREF _Toc402862966 �21��
Step 4 - Testing on the Fly (Adhoc)	� GOTOBUTTON _Toc402862967 � PAGEREF _Toc402862967 �21��
Step 5 - Summarize Program and Problem Findings	� GOTOBUTTON _Toc402862968 � PAGEREF _Toc402862968 �21��
Test Cycle 2	� GOTOBUTTON _Toc402862969 � PAGEREF _Toc402862969 �21��
Step 1 - Review ONYX Responses by Developers	� GOTOBUTTON _Toc402862970 � PAGEREF _Toc402862970 �21��
Step 2 - Review Comments on Bugs that Will Not be Fixed	� GOTOBUTTON _Toc402862971 � PAGEREF _Toc402862971 �21��
Step 3 - Pull Out Notes from Last Time, Add New Notes, and Execute	� GOTOBUTTON _Toc402862972 � PAGEREF _Toc402862972 �22��
Quiz #2 - Chapter #1	� GOTOBUTTON _Toc402862973 � PAGEREF _Toc402862973 �23��
Chapter #2 - Objectives & Limits of Testing	� GOTOBUTTON _Toc402862974 � PAGEREF _Toc402862974 �24��
Objectives and Limits of Testing	� GOTOBUTTON _Toc402862975 � PAGEREF _Toc402862975 �24��
You Can’t Test a Program Completely	� GOTOBUTTON _Toc402862976 � PAGEREF _Toc402862976 �24��
Input Domain	� GOTOBUTTON _Toc402862977 � PAGEREF _Toc402862977 �24��
Pathways	� GOTOBUTTON _Toc402862978 � PAGEREF _Toc402862978 �24��
Complexity	� GOTOBUTTON _Toc402862979 � PAGEREF _Toc402862979 �24��
Program Verification is Wrong	� GOTOBUTTON _Toc402862980 � PAGEREF _Toc402862980 �25��
Parting Thought	� GOTOBUTTON _Toc402862981 � PAGEREF _Toc402862981 �25��
Quiz #3 - Chapter #2	� GOTOBUTTON _Toc402862982 � PAGEREF _Toc402862982 �26��
Chapter #3 - Overview of Testing Types	� GOTOBUTTON _Toc402862983 � PAGEREF _Toc402862983 �27��
Introduction	� GOTOBUTTON _Toc402862984 � PAGEREF _Toc402862984 �27��
Design and Development Players:	� GOTOBUTTON _Toc402862985 � PAGEREF _Toc402862985 �27��
Overview of Software Development Stages	� GOTOBUTTON _Toc402862986 � PAGEREF _Toc402862986 �27��
Planning Stages	� GOTOBUTTON _Toc402862987 � PAGEREF _Toc402862987 �28��
Testing During Planning Stages	� GOTOBUTTON _Toc402862988 � PAGEREF _Toc402862988 �28��
Comparative Product Evaluations	� GOTOBUTTON _Toc402862989 � PAGEREF _Toc402862989 �28��
Miscellaneous Planning Stages	� GOTOBUTTON _Toc402862990 � PAGEREF _Toc402862990 �28��
Design Stages	� GOTOBUTTON _Toc402862991 � PAGEREF _Toc402862991 �28��
General	� GOTOBUTTON _Toc402862992 � PAGEREF _Toc402862992 �28��
External Design	� GOTOBUTTON _Toc402862993 � PAGEREF _Toc402862993 �29��
Internal Design	� GOTOBUTTON _Toc402862994 � PAGEREF _Toc402862994 �29��
Data Design	� GOTOBUTTON _Toc402862995 � PAGEREF _Toc402862995 �29��
Prototyping	� GOTOBUTTON _Toc402862996 � PAGEREF _Toc402862996 �29��
Testing During Design Stage	� GOTOBUTTON _Toc402862997 � PAGEREF _Toc402862997 �29��
Review Meetings	� GOTOBUTTON _Toc402862998 � PAGEREF _Toc402862998 �29��
Development Stage	� GOTOBUTTON _Toc402862999 � PAGEREF _Toc402862999 �30��
Glass Box Code Testing	� GOTOBUTTON _Toc402863000 � PAGEREF _Toc402863000 �30��
Structural Versus Functional Testing	� GOTOBUTTON _Toc402863001 � PAGEREF _Toc402863001 �30��
Path Testing: Coverage Criteria	� GOTOBUTTON _Toc402863002 � PAGEREF _Toc402863002 �31��
Incremental Testing	� GOTOBUTTON _Toc402863003 � PAGEREF _Toc402863003 �31��
Big Bang Testing	� GOTOBUTTON _Toc402863004 � PAGEREF _Toc402863004 �31��
Top-Down Versus Bottom-Up Testing	� GOTOBUTTON _Toc402863005 � PAGEREF _Toc402863005 �31��
Static Versus Dynamic Testing	� GOTOBUTTON _Toc402863006 � PAGEREF _Toc402863006 �31��
Software Metrics	� GOTOBUTTON _Toc402863007 � PAGEREF _Toc402863007 �32��
Performance Testing	� GOTOBUTTON _Toc402863008 � PAGEREF _Toc402863008 �32��
Regression Testing	� GOTOBUTTON _Toc402863009 � PAGEREF _Toc402863009 �32��
Testing and Fixing	� GOTOBUTTON _Toc402863010 � PAGEREF _Toc402863010 �32��
Black Box Testing	� GOTOBUTTON _Toc402863011 � PAGEREF _Toc402863011 �32��
Maintenance	� GOTOBUTTON _Toc402863012 � PAGEREF _Toc402863012 �33��
General	� GOTOBUTTON _Toc402863013 � PAGEREF _Toc402863013 �33��
Port Testing	� GOTOBUTTON _Toc402863014 � PAGEREF _Toc402863014 �33��
Quiz #4 - Chapter #3	� GOTOBUTTON _Toc402863015 � PAGEREF _Toc402863015 �34��
Chapter #4 - Software Errors	� GOTOBUTTON _Toc402863016 � PAGEREF _Toc402863016 �35��
Quality	� GOTOBUTTON _Toc402863017 � PAGEREF _Toc402863017 �35��
What is Software Error?	� GOTOBUTTON _Toc402863018 � PAGEREF _Toc402863018 �35��
Categories of Software Errors	� GOTOBUTTON _Toc402863019 � PAGEREF _Toc402863019 �35��
User Interface	� GOTOBUTTON _Toc402863020 � PAGEREF _Toc402863020 �35��
Error Handling	� GOTOBUTTON _Toc402863021 � PAGEREF _Toc402863021 �35��
Boundary Conditions	� GOTOBUTTON _Toc402863022 � PAGEREF _Toc402863022 �35��
Calculation Errors	� GOTOBUTTON _Toc402863023 � PAGEREF _Toc402863023 �36��
Initial and Later States	� GOTOBUTTON _Toc402863024 � PAGEREF _Toc402863024 �36��
Control Flow Errors	� GOTOBUTTON _Toc402863025 � PAGEREF _Toc402863025 �36��
Errors in Handling or Interpreting Data	� GOTOBUTTON _Toc402863026 � PAGEREF _Toc402863026 �36��
Load Conditions	� GOTOBUTTON _Toc402863027 � PAGEREF _Toc402863027 �36��
Hardware	� GOTOBUTTON _Toc402863028 � PAGEREF _Toc402863028 �36��
Source and Version Control	� GOTOBUTTON _Toc402863029 � PAGEREF _Toc402863029 �36��
Documentation	� GOTOBUTTON _Toc402863030 � PAGEREF _Toc402863030 �36��
Testing Errors	� GOTOBUTTON _Toc402863031 � PAGEREF _Toc402863031 �37��
Quiz #5 - Chapter #4	� GOTOBUTTON _Toc402863032 � PAGEREF _Toc402863032 �38��
Chapter #5 - Reporting and Analyzing Bugs	� GOTOBUTTON _Toc402863033 � PAGEREF _Toc402863033 �39��
Overview	� GOTOBUTTON _Toc402863034 � PAGEREF _Toc402863034 �39��
Effective Bug Write-ups	� GOTOBUTTON _Toc402863035 � PAGEREF _Toc402863035 �39��
Contents of Problem Report	� GOTOBUTTON _Toc402863036 � PAGEREF _Toc402863036 �39��
Characteristics of Problem Report	� GOTOBUTTON _Toc402863037 � PAGEREF _Toc402863037 �40��
Written	� GOTOBUTTON _Toc402863038 � PAGEREF _Toc402863038 �40��
Other Characteristics	� GOTOBUTTON _Toc402863039 � PAGEREF _Toc402863039 �40��
Analysis and Refinement of Bug Repro Path	� GOTOBUTTON _Toc402863040 � PAGEREF _Toc402863040 �40��
Tactics for Analysis and Refinement of Bug Repro Path	� GOTOBUTTON _Toc402863041 � PAGEREF _Toc402863041 �41��
Making a Bug Reproducible	� GOTOBUTTON _Toc402863042 � PAGEREF _Toc402863042 �41��
Quiz #6 - Chapter #5	� GOTOBUTTON _Toc402863043 � PAGEREF _Toc402863043 �43��
Chapter #6 - The Problem Tracking System	� GOTOBUTTON _Toc402863044 � PAGEREF _Toc402863044 �44��
Tracking System Objectives and Tasks	� GOTOBUTTON _Toc402863045 � PAGEREF _Toc402863045 �44��
Problem Tracking Overview	� GOTOBUTTON _Toc402863046 � PAGEREF _Toc402863046 �44��
Who Writes the Bug Report	� GOTOBUTTON _Toc402863047 � PAGEREF _Toc402863047 �44��
Project Manager	� GOTOBUTTON _Toc402863048 � PAGEREF _Toc402863048 �44��
Programmers	� GOTOBUTTON _Toc402863049 � PAGEREF _Toc402863049 �44��
Deferrals	� GOTOBUTTON _Toc402863050 � PAGEREF _Toc402863050 �45��
Ignored Problems	� GOTOBUTTON _Toc402863051 � PAGEREF _Toc402863051 �45��
Status Reports	� GOTOBUTTON _Toc402863052 � PAGEREF _Toc402863052 �45��
Tracking System Users	� GOTOBUTTON _Toc402863053 � PAGEREF _Toc402863053 �45��
Project Manager Frustrations	� GOTOBUTTON _Toc402863054 � PAGEREF _Toc402863054 �46��
Publishing Bug Statistics	� GOTOBUTTON _Toc402863055 � PAGEREF _Toc402863055 �46��
Inappropriate Use of Bug Metrics	� GOTOBUTTON _Toc402863056 � PAGEREF _Toc402863056 �46��
Bug Report Formats	� GOTOBUTTON _Toc402863057 � PAGEREF _Toc402863057 �46��
Further Thoughts on Problem Reporting	� GOTOBUTTON _Toc402863058 � PAGEREF _Toc402863058 �47��
Quiz #7 - Chapter #6	� GOTOBUTTON _Toc402863059 � PAGEREF _Toc402863059 �48��
Chapter #7 - Test Case Design	� GOTOBUTTON _Toc402863060 � PAGEREF _Toc402863060 �49��
Characteristics of a Good Test (Case)	� GOTOBUTTON _Toc402863061 � PAGEREF _Toc402863061 �49��
Equivalence Classes	� GOTOBUTTON _Toc402863062 � PAGEREF _Toc402863062 �49��
Boundary Conditions	� GOTOBUTTON _Toc402863063 � PAGEREF _Toc402863063 �49��
Visible State Transitions	� GOTOBUTTON _Toc402863064 � PAGEREF _Toc402863064 �49��
Race Conditions & Other Time Dependencies	� GOTOBUTTON _Toc402863065 � PAGEREF _Toc402863065 �50��
Load Testing	� GOTOBUTTON _Toc402863066 � PAGEREF _Toc402863066 �50��
Error Guessing	� GOTOBUTTON _Toc402863067 � PAGEREF _Toc402863067 �50��
Automation of Functional Equivalence Testing	� GOTOBUTTON _Toc402863068 � PAGEREF _Toc402863068 �50��
Random Input	� GOTOBUTTON _Toc402863069 � PAGEREF _Toc402863069 �50��
Quiz #8 - Chapter #7	� GOTOBUTTON _Toc402863070 � PAGEREF _Toc402863070 �51��
Chapter #8 - Testing Printers	� GOTOBUTTON _Toc402863071 � PAGEREF _Toc402863071 �52��
Examples of Configuration Testing	� GOTOBUTTON _Toc402863072 � PAGEREF _Toc402863072 �52��
Seven Steps to Good Configuration Testing	� GOTOBUTTON _Toc402863073 � PAGEREF _Toc402863073 �52��
Quiz #9 - Chapter #8	� GOTOBUTTON _Toc402863074 � PAGEREF _Toc402863074 �53��
Chapter #10 - Testing User Manuals	� GOTOBUTTON _Toc402863075 � PAGEREF _Toc402863075 �54��
Effective Documentation	� GOTOBUTTON _Toc402863076 � PAGEREF _Toc402863076 �54��
Documentation Tester’s Objective	� GOTOBUTTON _Toc402863077 � PAGEREF _Toc402863077 �54��
How Testing Documentation Contributes to Reliability	� GOTOBUTTON _Toc402863078 � PAGEREF _Toc402863078 �54��
Testing Techniques for Manuals	� GOTOBUTTON _Toc402863079 � PAGEREF _Toc402863079 �54��
The First Draft	� GOTOBUTTON _Toc402863080 � PAGEREF _Toc402863080 �54��
The Second Draft	� GOTOBUTTON _Toc402863081 � PAGEREF _Toc402863081 �55��
Revised Second Draft	� GOTOBUTTON _Toc402863082 � PAGEREF _Toc402863082 �55��
Beta Test Draft	� GOTOBUTTON _Toc402863083 � PAGEREF _Toc402863083 �55��
Online Help	� GOTOBUTTON _Toc402863084 � PAGEREF _Toc402863084 �55��
Quiz #10 - Chapter #10	� GOTOBUTTON _Toc402863085 � PAGEREF _Toc402863085 �56��
Chapter #11 - Testing Tools	� GOTOBUTTON _Toc402863086 � PAGEREF _Toc402863086 �57��
Fundamental Tools	� GOTOBUTTON _Toc402863087 � PAGEREF _Toc402863087 �57��
Automated Acceptance and Regression Tests	� GOTOBUTTON _Toc402863088 � PAGEREF _Toc402863088 �57��
General Notes	� GOTOBUTTON _Toc402863089 � PAGEREF _Toc402863089 �57��
Source of Regression Tests	� GOTOBUTTON _Toc402863090 � PAGEREF _Toc402863090 �58��
Feeding Input to Program (Automation Technique)	� GOTOBUTTON _Toc402863091 � PAGEREF _Toc402863091 �58��
Evaluating Output	� GOTOBUTTON _Toc402863092 � PAGEREF _Toc402863092 �58��
Automation Risks	� GOTOBUTTON _Toc402863093 � PAGEREF _Toc402863093 �58��
Standards Checkers	� GOTOBUTTON _Toc402863094 � PAGEREF _Toc402863094 �59��
White Box Testing	� GOTOBUTTON _Toc402863095 � PAGEREF _Toc402863095 �59��
Instrumented Code	� GOTOBUTTON _Toc402863096 � PAGEREF _Toc402863096 �59��
Assertion Checks	� GOTOBUTTON _Toc402863097 � PAGEREF _Toc402863097 �59��
Quiz #11 - Chapter #11	� GOTOBUTTON _Toc402863098 � PAGEREF _Toc402863098 �60��
Chapter #12 - Test Planning and Test Documentation	� GOTOBUTTON _Toc402863099 � PAGEREF _Toc402863099 �61��
Objective of Test Plan: Product vs. Tool	� GOTOBUTTON _Toc402863100 � PAGEREF _Toc402863100 �61��
Test Plan as Product	� GOTOBUTTON _Toc402863101 � PAGEREF _Toc402863101 �61��
Test Plan as Tool	� GOTOBUTTON _Toc402863102 � PAGEREF _Toc402863102 �61��
Detailed Objectives of Test Planning and Documentation	� GOTOBUTTON _Toc402863103 � PAGEREF _Toc402863103 �61��
Facilitates Technical Tasks of Testing	� GOTOBUTTON _Toc402863104 � PAGEREF _Toc402863104 �61��
Improves Communication of Testing Tasks and Processes	� GOTOBUTTON _Toc402863105 � PAGEREF _Toc402863105 �62��
Provides Structure for Organizing, Scheduling, and Managing Project Testing	� GOTOBUTTON _Toc402863106 � PAGEREF _Toc402863106 �62��
Test Types to Cover in Test Planning Documents	� GOTOBUTTON _Toc402863107 � PAGEREF _Toc402863107 �62��
White Box Testing	� GOTOBUTTON _Toc402863108 � PAGEREF _Toc402863108 �62��
Black Box Testing	� GOTOBUTTON _Toc402863109 � PAGEREF _Toc402863109 �63��
Waterfall vs. Evolutionary Model SDLC	� GOTOBUTTON _Toc402863110 � PAGEREF _Toc402863110 �63��
Tactics of Evolution	� GOTOBUTTON _Toc402863111 � PAGEREF _Toc402863111 �64��
Where to Focus Next	� GOTOBUTTON _Toc402863112 � PAGEREF _Toc402863112 �64��
Test Planning Documents	� GOTOBUTTON _Toc402863113 � PAGEREF _Toc402863113 �65��
Lists	� GOTOBUTTON _Toc402863114 � PAGEREF _Toc402863114 �65��
Tables	� GOTOBUTTON _Toc402863115 � PAGEREF _Toc402863115 �65��
Outlines	� GOTOBUTTON _Toc402863116 � PAGEREF _Toc402863116 �65��
Matrices	� GOTOBUTTON _Toc402863117 � PAGEREF _Toc402863117 �65��
Documenting Test Materials	� GOTOBUTTON _Toc402863118 � PAGEREF _Toc402863118 �66��
Personal Notes	� GOTOBUTTON _Toc402863119 � PAGEREF _Toc402863119 �66��
Other Notes	� GOTOBUTTON _Toc402863120 � PAGEREF _Toc402863120 �66��
Test Plan	� GOTOBUTTON _Toc402863121 � PAGEREF _Toc402863121 �66��
Miscellaneous Test Specs	� GOTOBUTTON _Toc402863122 � PAGEREF _Toc402863122 �67��
Quiz #12 - Chapter #12	� GOTOBUTTON _Toc402863123 � PAGEREF _Toc402863123 �68��
Chapter #13 - Tying It All Together	� GOTOBUTTON _Toc402863124 � PAGEREF _Toc402863124 �69��
Software Development Tradeoffs	� GOTOBUTTON _Toc402863125 � PAGEREF _Toc402863125 �69��
Software Development Models	� GOTOBUTTON _Toc402863126 � PAGEREF _Toc402863126 �69��
Traditional Waterfall Method	� GOTOBUTTON _Toc402863127 � PAGEREF _Toc402863127 �69��
Evolutionary Method	� GOTOBUTTON _Toc402863128 � PAGEREF _Toc402863128 �70��
Product Design Phase	� GOTOBUTTON _Toc402863129 � PAGEREF _Toc402863129 �71��
Program Manager Activities	� GOTOBUTTON _Toc402863130 � PAGEREF _Toc402863130 �71��
Programmer Activities	� GOTOBUTTON _Toc402863131 � PAGEREF _Toc402863131 �71��
Marketing Activities	� GOTOBUTTON _Toc402863132 � PAGEREF _Toc402863132 �71��
Tech Writing Activities	� GOTOBUTTON _Toc402863133 � PAGEREF _Toc402863133 �71��
Testing Activities	� GOTOBUTTON _Toc402863134 � PAGEREF _Toc402863134 �71��
Fragments Coded: First Functionality Phase	� GOTOBUTTON _Toc402863135 � PAGEREF _Toc402863135 �71��
Program Manager Activities	� GOTOBUTTON _Toc402863136 � PAGEREF _Toc402863136 �71��
Programmer Activities	� GOTOBUTTON _Toc402863137 � PAGEREF _Toc402863137 �72��
Testing Activities	� GOTOBUTTON _Toc402863138 � PAGEREF _Toc402863138 �72��
Almost Alpha Phase	� GOTOBUTTON _Toc402863139 � PAGEREF _Toc402863139 �72��
Program Manager Activities	� GOTOBUTTON _Toc402863140 � PAGEREF _Toc402863140 �72��
Programmer Activities	� GOTOBUTTON _Toc402863141 � PAGEREF _Toc402863141 �72��
Tech Writing Activities	� GOTOBUTTON _Toc402863142 � PAGEREF _Toc402863142 �72��
Testing Activities	� GOTOBUTTON _Toc402863143 � PAGEREF _Toc402863143 �72��
Alpha Phase	� GOTOBUTTON _Toc402863144 � PAGEREF _Toc402863144 �72��
Programmer Activities	� GOTOBUTTON _Toc402863145 � PAGEREF _Toc402863145 �72��
Marketing Activities	� GOTOBUTTON _Toc402863146 � PAGEREF _Toc402863146 �73��
Tech Writing Activities	� GOTOBUTTON _Toc402863147 � PAGEREF _Toc402863147 �73��
Testing Activities	� GOTOBUTTON _Toc402863148 � PAGEREF _Toc402863148 �73��
Pre-Beta Phase	� GOTOBUTTON _Toc402863149 � PAGEREF _Toc402863149 �73��
Programmer Activities	� GOTOBUTTON _Toc402863150 � PAGEREF _Toc402863150 �73��
Testing Activities	� GOTOBUTTON _Toc402863151 � PAGEREF _Toc402863151 �73��
Beta Phase	� GOTOBUTTON _Toc402863152 � PAGEREF _Toc402863152 �73��
Programmer Activities	� GOTOBUTTON _Toc402863153 � PAGEREF _Toc402863153 �73��
Marketing Activities	� GOTOBUTTON _Toc402863154 � PAGEREF _Toc402863154 �74��
Tech Writing Activities	� GOTOBUTTON _Toc402863155 � PAGEREF _Toc402863155 �74��
Testing Activities	� GOTOBUTTON _Toc402863156 � PAGEREF _Toc402863156 �74��
User Interface Freeze Phase	� GOTOBUTTON _Toc402863157 � PAGEREF _Toc402863157 �74��
Programmer Activities	� GOTOBUTTON _Toc402863158 � PAGEREF _Toc402863158 �74��
Marketing Activities	� GOTOBUTTON _Toc402863159 � PAGEREF _Toc402863159 �75��
Tech Writing Activities	� GOTOBUTTON _Toc402863160 � PAGEREF _Toc402863160 �75��
Testing Activities	� GOTOBUTTON _Toc402863161 � PAGEREF _Toc402863161 �75��
Pre-Final Phase	� GOTOBUTTON _Toc402863162 � PAGEREF _Toc402863162 �75��
Programmer Activities	� GOTOBUTTON _Toc402863163 � PAGEREF _Toc402863163 �75��
Marketing Activities	� GOTOBUTTON _Toc402863164 � PAGEREF _Toc402863164 �75��
Tech Writer Activities	� GOTOBUTTON _Toc402863165 � PAGEREF _Toc402863165 �75��
Testing Activities	� GOTOBUTTON _Toc402863166 � PAGEREF _Toc402863166 �75��
Final (Integrity) Test Phase	� GOTOBUTTON _Toc402863167 � PAGEREF _Toc402863167 �76��
Programmer Activities	� GOTOBUTTON _Toc402863168 � PAGEREF _Toc402863168 �76��
Marketing Activities	� GOTOBUTTON _Toc402863169 � PAGEREF _Toc402863169 �76��
Tech Writer Activities	� GOTOBUTTON _Toc402863170 � PAGEREF _Toc402863170 �76��
Testing Activities	� GOTOBUTTON _Toc402863171 � PAGEREF _Toc402863171 �76��
Release Phase	� GOTOBUTTON _Toc402863172 � PAGEREF _Toc402863172 �76��
Programmer Activities	� GOTOBUTTON _Toc402863173 � PAGEREF _Toc402863173 �76��
Marketing Activities	� GOTOBUTTON _Toc402863174 � PAGEREF _Toc402863174 �76��
Tech Writing Activities	� GOTOBUTTON _Toc402863175 � PAGEREF _Toc402863175 �76��
Testing Activities	� GOTOBUTTON _Toc402863176 � PAGEREF _Toc402863176 �76��
Depth vs. Breadth in Testing	� GOTOBUTTON _Toc402863177 � PAGEREF _Toc402863177 �77��
Quiz #13 - Chapter #13	� GOTOBUTTON _Toc402863178 � PAGEREF _Toc402863178 �78��
�
�
Test Approach Document
Introduction
Testing Approach. Review and understand this document.

Purpose of document to identify:
Test Approach
High-level strategies
Testing roles throughout development cycle

Quality Objective
Primary Objective: “Identify and expose all issues and associated risks, ensure all known issues are communicated to the project team, and ensure that all issues are addressed in appropriate matter before release.”�
Secondary Objective: “Assure that the system meets the full requirements of the customer, maintain the quality of the product, and remain within the cost range established at the project outset.”

Test Methodology
Test Stages
Overview: Planning, Design, Development, Stabilization.
Milestone 1 - Planning: Requirements review, Functional Spec review, define testing scope, potential risks, etc.
Milestone 2 - Design: Test Plan, Test Spec, and some Test Cases created. Evaluate Design Spec. Create Test Schedule.
Milestone 2a - Usability Testing: Optional. Prototype GUI and schema/architecture. Testing may or may not participate.
Milestone 3 - Development Phase: App under construction, Test Cases written, some Tests Cases executed on internal release builds.
Milestone 3a - Unit Testing: Development conducts white box testing. Check code, database backend, etc.
Milestone 3b - Acceptance into Internal Release Testing: Builds issued to testing throughout development cycle . Must pass BAT, have dev signoff on unit testing, be accompanied by Release Notes, etc.
Milestone 3c - Internal Release Testing: Evaluation *new* UI and functionality. Several cycles occur.
Milestone 3d - Acceptance Alpha Testing: Code Complete must occur, all Critical Path Test Cases must pass, must be functionally complete. Criteria failure = rejection.
Milestone 3e - Alpha Testing: All Test Cases run at least once by Test team.
Milestone 4 - Stabilization Phase: Testing is on *always* on critical path during this stage. Objective is to get robust release candidate build at Release Milestone.
Milestone 4a - Acceptance into Beta Testing: HBS Testing must provide brief report indicating test results to date. All sev 1 and sev 2 bugs must be addressed, and all priority 1 and 2 bugs resolved.
Milestone 4b - Beta Testing: User Group feedback plus HBS Testing 2nd cycle of internal testing. Is application acceptable to customer? Training to coordinated.
Milestone 4c - Release To Manufacturing (RTM): All other milestones successfully passed. Release candidate put into production. Gold Release set passes test cases.
Milestone 4d - Post Release: Post Mortem meeting conducted where project cycle reviewed.

Test Levels
Testing broken down into levels of complexity:

Build Tests
Level 1: Build Acceptance Tests.
Level 2: Smoke Tests.
Level 2a: Bug Regression Testing.

Milestone Tests
Level 3: Critical Path Tests.

Release Tests
Level 4: Standard Tests
Level 5: Suggested Tests

Bug Regression
All failed bugs must be re-tested on subsequent builds until passes.
Bugs Tracked in ONYX for regression purposes.
Final Release cycle of testing (suggested during Beta) should include Regression of 50% of bugs.

Bug Triage
Regularly scheduled meetings to prioritize bug fixes (when).
Developer Lead, Test Lead, and Program Manager all attend meeting.

Suspension Criteria Resumption Requirements
If BAT, smoke test, or Critical Path bugs fail, the build will be rejected.

Test Completeness
Standard Conditions for Release: All Project Members agree, all test cases pass or failures accepted, all Priority 1 and 2 bugs resolved and closed, adhoc testing completed.
Bug Reporting and Triage Conditions: Bug find rate decreasing trend to Zero Defects (new bugs), finds of new Severity 1 and 2 bugs drops dramatically, and remains low, no must fix bugs remaining.

Component Testing
This entire sub-document is a comprehensive Generic Test Specification built into the Test Approach document.
Use it to structure your own Test Specs.
Use it to generate Test Cases, and guard against omission.
Basic Overview�
Front End
Data Testing
Installation
Boundary Conditions
Environment & Configuration Testing
UI Testing
Command Structure
Usability
Localization
Error Handling
Race Conditions
Security.
Performance Testing: Isolate bottlenecks, suggest improvements.
Stress Testing
Load Testing�
Back-End
General Tests
Structural Tests
Functional (Content) Tests.�
Integration Testing
Tying it all together.�
Unit Testing
Developers unit test their own code—info included for the curious.�
Design Testing
Requirements
Functional Spec
Design Spec
Data Schema
Feature Overview�
Areas Not Covered
Always, always, always include omissions to set expectations.�
Acceptance Criteria
Unit Testing Complete
Existing Bugs all fixed
Development Release Document
Instructions included
Elements List (all files, and other components)

Test Deliverables

Deliverables Diagram
Know it cold.

Deliverables Matrix
Know it
Keep it up to date.

Document Deliverables
Test Approach: General overview of how Testing functions.
Test Plan: Project specific implementation of the Test Approach. Includes product breakdown, responsibilities, expectations, risks, methods used, areas omitted, assumptions made, etc.
Test Schedule: MS Project schedule indicating what and when tasks will be done.
Test Specification(s): Lists of test cases for a given area of testing.�
Test Case / Bug Write-Ups
Test Cases documented in TCM (Access utility).
Every Onyx bug must have Test Case associated with it.
TCM Coverage Reports will indicate project status (# cases passed, failed, or untested).
Bugs will be documented in company-wide Onyx system.
Onyx Analyzer will be built to generate meaningful reports from Onyx data.

Reports
Test Lead is responsible for writing and distributing reports.
Weekly Status Report: Project specific summary of Onyx Analyzer bug counts and bug breakdown by Status and Severity. Also summarize TCM test case coverage (# test cases passed, failed, and untested).
Milestone Completion Reports: Major milestones should always be finalized with a report of some kind. �Ranges from simple checklist signed-off, to full-blown report. Detail level depends upon significance of milestone – use your judgment.
Test Final Report: Test Lead issues this certification report. Report will assess product readiness for shipment.
CD Archive: Once project achieves RTM, all documents, all testware source code, and any other useful electronic files should be archived off onto a CD for permanent storage.�

Responsibility Matrix
Know who does what.
Track this in your project schedule, if you are not given an input deliverable from other project colleague, be sure to voice the issue – else it will be omitted and the subsequent impact to you ignored.

Testing Tools

Tracking Tools
Onyx: Bug tracking.
TCM: Test Case documentation and tracking.
Configuration Management: Source Safe, but currently only development has access.
Issues Database: RFI, COP, CO tracking system will eventually be built.
Task Manager: Tracks time usage and task status over time.

Diagnostic Tools
Virus Scan: Be sure to check every gold CD set.
NT Task Manager: Excellent performance monitoring tool. NT 4.0 only.
WinDiff: Excellent file comparison tool. Visual diff’ing.
WPS: NT tool that lists all dll modules loaded into memory.
PerfMon: NT performance monitor. Best one around.
SysInfo: MS Office tool that lists info about current state of computer, current loaded dll’s, etc.
Dr Watson: Familiarize yourself with this auto-loaded error tracking tool. Goto Windows directory to pull up details in error.log.

Automation Tools
Dialog Check: VT tool that runs battery of standard test cases looking for errors.
Smart Monkey: Excellent tools for truly random testing. Use to derive MTBF metric.
Visual Test: Excellent GUI testing tool. �

Back-End Tools
Native DB Tools: Use those tools built into the DB.
Command Line Tools: Use iSQL, SQL Plus, SvrMgr, etc.
VB / Access Apps: Excellent back-end automation tools. Also use for adhoc query tests.
Batch Scripts: Powerful automation tool. Run periodically. Use for schema comparisons.
Event Viewer: NT has event viewer built-in. Use it to find abnormal database shut-downs, service problems, ODBC driver problems, etc.
Test Data Scrambler: Scrambles live data to maintain the richness of real data without the security problems.
Telnet: Use to hook into Unix boxes.

Tool Server
Matt will create a website full of these tools in the near future. Each tool will be accompanied by a write-up describing its use.

Test Environment
Hardware
Software

Personnel
Task Manager: Track resource utilization on tasks and across projects. Used to estimate resource loading on subsequent projects (metric is a projector).
Resource Requests: Test Lead responsible for allocating resources on new projects. Use of Complexity Matrix is strongly suggested to generate more accurate estimate.

TCM and ONYX Database Standards

Test Cases
General: Use TCM. Fill out as many fields as possible.
TCM Structure: Test Spec Area, Sub Area(s), Component / Functionality, and Test Cases.
Fields: Name, TCID, Area, Attachments, Details (with suggested template), and other fields.
Writing Guidelines: Do’s and Don’ts of writing up a test case (or bug).

Bugs
Onyx: All bugs documented in Onyx. Set adhoc flag in corresponding test cases when bug found adhoc (without existing test case).
Bug Severity & Priority: Definition of Sev. 1-4, and Priority 1-4 bugs.
Bug Reporting: is critical communication aspect of software development.�

Bug Entry Fields
Bug Type: Documentation, System Crash, Trappable Errors, User Interface, Hardware, Erroneous Output, and Suggestion.
Assigned To: In whose court is bug currently located?
Product: To which product is bug assigned?
Status: New, Under Review, Testing in Progress, Needs Re-Test, Re-Review, Closed, and Temp Deferred.
Source: Who found the bug: Testing, Tech Support, other.
Priority: Low, Medium (should fix), High (must fix).
Severity: 1 (crash), 2 (major), 3 (minor), and 4 (trivial).
Code 1: How Resolved? Deferred, By Design, Duplicate, Fixed, Not a Bug, Not Reproducible, or Suggestion.

�Quiz #1 - Test Approach Document

What is testing’s objective? (Hint: discuss both the primary and secondary objectives and why one is higher priority than the other.)��
Name and describe the four (4) high level milestones. Discuss the interim milestones between.���
Define the Build Tests, Milestone Tests, and Release Tests. Discuss the differences (Hint: answers in class, not notes).���
What is Regression Testing? ���What is its relation to Final Release Testing?��
What are the standard conditions for Release from Testing?���What should the Bug Trend Rate indicate before Release from Testing can occur?��
Define is Component Testing. Discuss all of its sub-categories.������
How are the Test Plan, Test Spec, and Test Approach related? How are they different?��
List 3 separate reports that testers are responsible for producing. Discuss their similarities and differences.���
a) What are Tracking Tools? Name and define three.���b) What are Diagnostic Tools? Name and define four.���c) What are Back-End Tools? Name and define three.���
What is a Tool Server? Why is it so important?�

�Chapter #1 - Introduction to Testing

Introduction
Testing Computer Software provides a realistic, pragmatic introduction to testing consumer and business software under normal business conditions.

Purpose of text is to instruct:
Test Approach when other team members not follow “the rules”.
High-level strategies and procedures
Testing roles throughout development cycle
Recognize that it is not the processes, but the people behind the processes that will make a product successful.
Book is targeted at testers, test leads, and test managers.

Example Test Series

Overview
Software testing is partly intuitive (thus artistic), but largely systematic (scientific).
Good testing involves much more than just running the program a few times to see whether it works (typical adhoc testing in the industry).
Thorough analysis of the app under test produces more effective testing (superior coverage, reduced omissions, etc.)

Test Cycle 1

Step 1 - Start with Simple Test
Familiarize yourself with app.
Run basic adhoc tests.
Problem (bug) reports. We use ONYX. Review the form on pg 3.

Step 2 - Notes Regarding Other Areas to Test
As you learn the app, jot down notes about what to test.
Valid vs. Invalid test cases.
Boundary Conditions (pg 4).

�Step 3 - Check Valid Cases
“The reason the program is in testing is that it probably doesn’t work.”
Forget the fancy test cases till later…do the critical path / work as specified (valid) test cases first.��
Step 4 - Testing on the Fly (Adhoc)
You will always run out of formally planned test cases eventually.
Adhoc (exploratory) test cases are almost always the best bug finds.
Be darned certain that you write-up the new adhoc finds as test cases for re-execution in the future.

Step 5 - Summarize Program and Problem Findings
For now, just for tester use.
In future, at major milestones, summary reports are an excellent communication tool.
Jot down notes about the boundary conditions you have located…you will come back and expand later as a formal test case.

Test Cycle 2

Step 1 - Review ONYX Responses by Developers
Determine what developers will and will not fix.
Determine which bugs are blocking bugs to try and prioritize their getting fixed first.
If a bug is blocking and not being fixed, attempt to re-write the test cases down stream so that execution can carry forward (use judgment here, do not waste time to alleviate developers of their responsibility).

Step 2 - Review Comments on Bugs that Will Not be Fixed
You may find similar related tests around this bug. Failures here can enable you to refine your repro path, bump up the visibility of the bug, and re-prioritize it as something that must be fixed.
“The single most effective tactic for getting a bug fixed is to find test cases that make it appear so likely to occur (high visibility) under such innocent circumstances that absolutely no one would be willing to tolerate it.”
Again, as a tester, it is critical to refine your repro paths when writing up a bug. Be sure to play with the bug long enough to boil it down to its nastiest form.

Step 3 - Pull Out Notes from Last Time, Add New Notes, and Execute
Start with existing BAT, Smoke, and Critical Path Test Cases when receiving a new build.
Do NOT start with the newest, complicated, “brilliant” test case that you just thought of.
Why? Because about one in three bug fixes is insufficient. Some portion of the bug still remains unfixed; or worse, existing functionality is broken by the “fix”.
“The best tester isn’t the one who finds the most bugs or who embarrasses the most programmers. The best tester is the one who gets the most bugs fixed.”

�Quiz #2 - Chapter #1

What is the purpose of this text? Why are we reading it?���
Discuss the steps in Test Cycle #1.���
Discuss the steps in Test Cycle #2.���
Chapter #2 - Objectives & Limits of Testing

Objectives and Limits of Testing
Realistic test planning is dominated by need to select few best test cases from huge superset of possibilities.
No matter how hard you try, how thorough or careful you are, you will miss important tests.
Many new testers believe they can fully test each program, ensure program works correctly, and that bugs found after release indicate failure.
Tester’s objective is to do their job “well”, not “right”. In other words, find the big bugs. Find as many bugs as time permits. Execute only the best test cases, not every test case.

You Can’t Test a Program Completely

Input Domain
The domain of possible inputs is too large.
You’d have to test all valid inputs.
You’d have to test all invalid inputs.
You’d have to test all edited inputs.
You’d have to test all variations on input timing.
Prioritize the inputs you test.

Pathways
There are too many possible paths through the program to test completely.
Use heuristics (strategies that are good representative sampling of all test cases)
Myers sample (pg 21): Simple loop with a few IF statements. In most languages, take less than 20 lines of code. This program has 100 trillion pathways through it; a fast tester could test them all in a billion years.
Assuming you tested all pathways completely; you would be forced to re-test them all every time a new bug was found!

Complexity
The user interface issues (and thus design issues) are too complex to completely test.
If design error exists, how’s a tester to say a bug is a bug when it is as specified. Furthermore, how is a tester to recognize that the behavior is a bug.
You can’t prove programs correct using logic because you just don’t have sufficient time.

Program Verification is Wrong
Can’t test thoroughly enough to verify it works to spec.
Sets tester up for failure - every time find error, is a failure.
Fosters ineffective attitude - if expect success, then won’t look for bugs as hard.
Common estimates of cost of finding and fixing errors in programs range from 40%-80% of total development cost. (pg23)
Estimate of 1-3 bugs per 100 lines of code.
Most programmers catch and fix more than 99% of their own bugs – we must find the elusive remaining 1%.
If you expect the program to work, then you will see what you expect…thus you should expect it to fail and strive to prove the failures exist.

Parting Thought
A test that reveals a problem is a success…a test that did not reveal a problem was a waste of time.

�Quiz #3 - Chapter #2

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�Chapter #3 - Overview of Testing Types

Introduction
This chapter provides four types of information:
Terminology: names of development methods, risks, tests, problems.
Overview of SDLC Process: Discussion of how software is developed and when and how testers can give input earlier in the life cycle.
Description of Key Test Types: Main types of software tests, intent of each test, and when to use the test type.
Reference Guide: List of many useful books and papers on testing and software development.

Design and Development Players:
Architect: specifies overall internal design of code and data structures. Also may coordinate white box testing (high level).
Subject Matter Expert: understands customer needs and represents them so programmer or analyst can understand.
Human Factor Analyst: Ergonomist…rare.
User Interface Programmer: Designs and develops GUI.
Lead Programmer: write design specification, leads architecture development.
Product Manager: define market requirements, critical features or capabilities product must have to be competitive. Accountable for product profitability.
Technical Support Representative: handle customers’ complaints and requests for information.
Technical Writers: generate user manuals and online help. They, along with testing and tech support push for making software simpler and more consistent.
Testers: of course are member of the product development team.
Other: Some projects will require other types of people: graphic artists, reliability analysts, engineers, attorneys, accountants, physicians/nurses, etc.

Overview of Software Development Stages
Stages are: Planning, Design, Coding and Documentation, Testing and Fixing, and Maintenance
Most important take-away from this section is notion that should get bugs fixed as early as possible, even in the design phase if possible.
Look at costs on pg 31 of text…amazing isn’t it!

Planning Stages
Objectives Statement: describes planning team’s vision of product – what it should do, and why. Discuss shared goals.
Requirements Analysis: list objectives (above) that must be met. Examples include: price, performance, reliability, development time, lifespan, etc.
Functional Definition: bridges gap between requirements and the engineering design documents. To engineer (programmer, tester, etc.), the requirements may seem vague, incomplete, or confusing. Translates the requirements into list of features, functions, and reports. Does not specify “how” implemented…that is left to programmers.

Testing During Planning Stages
Ideas are tested at this stage, not code – thus marketers, product managers, and others also “test” the project at this stage
Are these the right requirements? Should product be built?
Are they complete? Too many or too few?
Are they compatible? Any contradictions?
Are they achievable? Any underlying assumptions that are just incorrect?
Are they reasonable? Have trade-offs been sufficiently analyzed? (Performance, development time, cost, quality, etc.)
Are they testable? Is documentation testable? Is app testable early in SDLC?

Comparative Product Evaluations
Have competing products been analyzed? Even tested?
Information found here should be rolled back into Planning Stage as additional requirements, features, and the like

Miscellaneous Planning Stages
Focus Groups: Random group of users to sample whether new features will be perceived as a good or bad thing
Task Analysis: Interview people and flow chart the manual process your are about to automate. Use output to challenge requirements

Design Stages
General
Designers engineer implementation methodology for achieving the requirements
Traditional method has it that development does not start until Design is completed; whereas incremental prototype (or RAD) has development starting with a little lag behind design, and running parallel.

External Design
Complete description of UI: screens, report layouts, etc.
Similar to User Manual (use User Manual if do not have spec.)
�Internal Design
Structural Design: breakdown large tasks into distinguishable sub-tasks, and sub-tasks into simpler pieces – this is called decomposition.
Communication: Define how modules communicate between each other

Data Design
What is the data like? What are the data structures like?
Which routines need access to what data (inputs and outputs)?
Database naming conventions?
Where and how will data be stored (tape, disk, internet, phone, etc.)?

Prototyping
A prototype is a model of system
Top down, starting with largest components
Once people play with model; the requirements will almost certainly change
Should throw-away prototype and not evolve it into final product

Testing During Design Stage
Is design good? Will it lead to efficient, compact, testable, maintainable product?
Does design match requirements? If requirements and other planning docs were informal and ambiguous, management must recognize this impact on development.
Is design complete? Does it cover all aspects, including: relationships between modules, passing of data, exceptional circumstances, etc.?
Is design possible? Can machine run quickly? Sufficient memory? Sufficient I/O devices?
How well does design cover error handling? Do not ignore errors as “to be dealt with later”. Need to generate error table early on (esp. for localization)

Review Meetings
Objective is to identify problems with design, not solve them
Walkthrough: Designer simulates program. Shows how different pieces of system interact and expose awkwardness, redundancy and other missed details.
Inspection: Reviewers check every line of design against each item in checklist (built from requirements and functional spec)…note checklist focussed in great detail only on one area at a time (e.g.: performance, error handling, etc.)

Development Stage
During coding stage, programmer writes the programs and tests them

Glass Box Code Testing
Also known as white box testing, or unit testing
Programmer must perform this testing; NOT a black box tester because programmer is best equipped to perform self-testing here
Focused Testing: Programmer tests program in pieces, writing test code that feeds values into isolated module. Would be very difficult to perform using black box techniques.
Testing Coverage: Programmer tracks which parts of program are exercised via testing. Can go back and ensure that all branches or paths of code have been tested, adding new tests to cover those not yet tested.
Control Flow: Programmer tests using debugging tool to trace execution tools native to development language.
Data Integrity: Programmer knows which parts of program modify (or should modify) any item of data. Programmer needs to track data item through the system, spotting inappropriate manipulation (bugs) that might occur. Use of an oracle that spits out expected results and compares to actual results produced by system.
Internal Boundaries: Programmer is in much better position to observe internal boundaries (divide by zero, overflow errors, etc.) than is black box tester.
Algorythm Specific Testing: write up test code to test the algorythm, use XL spreadsheets to verify calculations or projections, etc.
Black box testers do not invest time learning source code; but rather analyzing program from outside as a user

Structural Versus Functional Testing
Structural Testing is white box testing (performed by developer) whereas Functional Testing is a type of black box testing.
Functions are tested by feeding them input and examining the output.

Path Testing: Coverage Criteria
Path: sequence of operations that runs from start of program to exit point
Line Coverage: requires every line of code to be test-executed at least once…weakest criterion (Level 1)
Branch Coverage: requires every line of code, plus every branch (logic condition) be tested. Also known as complete coverage (Level 2)
Condition Coverage: requires both previous levels of testing, plus tests every branch (logic condition) in both pass and fail modes (Level 3)

Incremental Testing
Each piece is first tested separately.
Individual testing stages include: module testing, unit testing, or element testing.
Stubs and drivers used as throwaway code to test the modules
Incremental testing makes it easy to pinpoint cause of error because less changed code to review for source of bug.
Errors across forms are more readily identified as such saving time otherwise spent looking inside of module, etc.

Big Bang Testing
Modules all tested at once as full integration testing
Only advantage is not have to spend time writing stub and driver code
Too hard to figure out what caused a failure…problem is which module is the one causing the bug to appear in module X.
Bad feelings can occur when one developer blames another for problems
Weak automation is a result of big bang testing. Code is changing daily by the time integration testing rolls around, and stubs and drivers would help automate the tests

Top-Down Versus Bottom-Up Testing
Both strategies are incremental
Top Down: highest level modules tested first and work down module hierarchy.
Bottom Down: lowest level modules tested first and work way up module hierarchy.

Static Versus Dynamic Testing
Static Testing: code is examined and not executed (compiler, read through code, walk-throughs, code inspections, desk checking, and code reviews)
Dynamic Testing: code is executed and not examined (most typical black box testing)

Software Metrics
Do not use complexity metrics (misleading, problem causing, etc.)

Performance Testing
Time program spends in specific modules
Time reports take to process and print
Time data processes take to execute
Use of benchmarks to determine if improvement has occurred

Regression Testing
Verifying that fixed bug now works is one part of regression testing
Verifying that fixed bug did not break anything else is other part of regression testing
50% probability of successful bug fix if 10 or fewer lines of code changed (pg 50).
20% probability of successful bug fix if around 50 lines of code changed (pg 50).

Testing and Fixing

Black Box Testing
Once coding is finished, goes to testing for extensive testing
Test Planning: can occur long before this phase starts…but must be done by now.
Acceptance Testing: Same as Build Acceptance Tests performed on every new build – is it stable enough to test?
Initial Stability Assessment: How reliable is program? Will it require 4 cycle of testing, or 24?
Function & System Testing: Verify program by testing it against related design documents or specifications. Validate program by testing against system requirements and functional specs. Includes:
Spec Verification
Correctness
Usability
Boundary Conditions
Performance
State Transitions
Mainstream Usage Tests
Load: volume, stress, and storage tests
Background
Error Recovery
Security
Compatibility and Conversion
Configuration
Installability and Serviceability
Beta Testing: Purpose to obtain user feedback once program is stable enough for external test releases
Integrity and Release Testing: Virus scan release disks, file compare to make sure master burn set matches that which most recently tested, run through marketing slicks, user manuals, release notes, etc. one last time.
Final Testing Acceptance and Certification: Rare unless project done for outside firm, and contract stipulates certain level of testing. Certification done by third party (not testing)

Maintenance

General
67% of total cost of software (mainframe systems with long lifespans)

Port Testing
Test on different operating systems, or significantly different computers (NT on DEC vs NT on PC)

�Quiz #4 - Chapter #3

Students need to write up and answer their own questions to be reviewed at start of next class period.�

�
Chapter #4 - Software Errors

Quality
For software, often best measured as satisfaction of customers, not how closely match to specification
Another measure of software is: features that make customer want to use the program, and flaws that make customer wish he’d bought something else
Reliability: is one aspect of quality – how often does program fail?
Features: are another aspect of quality – how often is program used?
Can not exclude one or the other; thus PM who adds in feature at last moment, but reduces reliability may still be doing a good thing when viewed as big picture

What is Software Error?
When program does not do what end user reasonably expects it to do
When user obstructed from efficiently using the program

Categories of Software Errors
User Interface
Functionality: doesn’t match specs or requirements
Communication: any source of confusion
Command Structure: easy to get lost?
Missing Commands: omissions are big source of errors
Performance: speed is crucial, even if program feels slower but isn’t measurably slower
Output: does user get what desire? Can save criteria or data?

Error Handling
Omission of error handling
Inadequate error checking/prevention
Untested error handling, etc.

Boundary Conditions
Smallest and largest inputs
Soonest to latest
First to last
Briefest to longest

Calculation Errors
Simple arithmetic errors
Lost precision
Rounding errors
Incorrect algorythms

Initial and Later States
Failure first time use system
Failure second time use system
Re-execute same state (e.g.: re-import same data over top)

Control Flow Errors
Occurs when program does wrong process next
Example includes clicking parent form during sub-process and re-running same process, etc.
Can lead to spectacular system crashes

Errors in Handling or Interpreting Data
Corrupt or misinterpret data
Rollback problems in case system crashed during batch

Load Conditions
Fail under high volume (much work over long time)
Fail under high stress (maximum load at one time)

Hardware
Programs send bad data to devices
Programs do not handle hardware errors gracefully (big problem)

Source and Version Control
Classic bugs are those re-introduced when developer accidentally puts back in old code (easy to do if say undoing a fix and starting back with source code that had side issues)
Wrong files get shipped (the untested temp files, newer version, etc.)

Documentation
Poor documentation is confusing
Can lead to users thinking software is buggy

Testing Errors
Testing errors are among most common (due to inadequate specs forcing assumptions as to expected values, etc.)
Test data errors (and omissions) too
Avoid reporting these as it wastes everybody’s time

�Quiz #5 - Chapter #4

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�
Chapter #5 - Reporting and Analyzing Bugs

Overview
How well you report a bug directly affects how likely the programmer is to fix, and how high the PM will prioritize it
This chapter explains: fields in typical bug report form, effective writing style for bug reports, and refining repro paths
Point of bug write-ups is to get the bug fixed

Effective Bug Write-ups
Explain how to reproduce the bug using step 1, step 2 notation for clarity (if programmer cannot repro it, he will not fix it)
Analyze the repro path and refine it to the minimum number of steps
Be complete
Do not be antagonistic
Write-up bug reports immediately before forget the details – lest you write up an incomplete report filled with assumptions and other confusing errors

Contents of Problem Report
Problem Report Number: Bug ID
Program: Where multiple apps tracked in same system
Version ID: Release and version, including build number
Report Type: Coding error, design issue, suggestion, documentation, hardware, and query (need to ask if is bug)
Attachments: Attach any test data, sample output or report, etc.
Problem Summary: One or two line summary that encapsulates the issue
Reproducible: Can you reproduce the problem? Flag.
Repro Path: Be very specific and yet succinct. Use notation such as step 1, step 2, etc.
Expected Value: Discuss what you expected to occur.
Actual Value: Discuss what actually occurred
Reported By: Who reported the bug?
Date Reported: When was bug reported?
Functional Area: Area in app where bug occurred. Very significant for historical or trending metrics to find trouble areas.
Assigned To: Who currently owns the problem?
Comments: Track status changes as bug is fixed, re-tested, etc.
Status: Bugs are initially in a state of Open, then Resolved (fixed but awaiting regression), and then Closed. There are multiple sub-states of Opened, and Closed defined as other fields.
Priority: Fix immediately, fix as soon as possible, must fix before next milestone, fix if possible, and optional fix.
Resolution: Pending, fixed, irreproducible, deferred, as designed, withdrawn by reporter, need more info., disagree with suggestion, and duplicate.
Signatures: Onyx tracks as new time date and user stamp in comments

Characteristics of Problem Report

Written
Do not rely on verbal bug reports – they will be forgotten, especially the “little” ones that get forgotten
More than you and the programmer need to know about the bug, so write it down to extend communication

Other Characteristics
Numbered: Each bug should be uniquely numbered for subsequent referencing
Simple: Bug should be simple, not compound problems in one report—break those out into separate bugs
Understandable: The more comprehensible, the more likely it is to get fixed
Reproducible: If a bug is not reproducible it will most likely be ignored
Non-Judgmental: A bug that flames the programmer will most likely not be fixed. Be tactful and diplomatic, not malicious

Analysis and Refinement of Bug Repro Path
Find the most serious consequences of the problem to emphasize and justify severity
Find simplest, shortest, and most general condition to write-up as repro steps to trigger the bug
Find alternate paths to the same problem, some paths are shorter and thus more likely to be fixed
Finding related problems in similar code or similar features is another huge area for potential problems (esp. where code just duplicated but fixes omitted)
When finding a bug, you are looking for symptoms, but when refining the path, you are looking for the causal agent

Tactics for Analysis and Refinement of Bug Repro Path
Look for Critical Step: Look for error messages, processing delays, blinking screens, jumping cursors, multiple cursors, misaligned text, characters doubled or omitted, etc.
Maximize Visibility of Program Behavior: Make use of all visibility tools such as asserts in code, use of code debugger, resource meter, error logging, performance metrics, and other diagnostic tools to automatically spot errors
Vary the Behavior: once you have identified the critical step, try different steps to locate related problems
Look for Follow-up Errors: Keep using program for a bit after error found to see if leads to larger error, or other related errors.
Progressively Omit Steps: or vary your steps to refine the repro path.
Check Previous Versions: Does the error exist there to, or is it a new introduction?
Configuration Dependence: Test the bug on a different computer to isolate if code is causal agent, or memory, or hard disk, or operating system, or special files on system, etc.

Making a Bug Reproducible
Bug is reproducible only if someone else can successful get the bug to reappear.
There are no intermittent bugs in software…if same conditions pop up, then bug will undoubtedly re-appear. Therefore, to write-off a bug as non-reproducible is to say that we are dropping the ball and letting it go, rather than pursuing the bug until it’s exact repro path is isolated.
Race Conditions: It’s good practice to slow down when find a bug and are re-executing the repro steps. If bug will not repro successfully when executed slowly, then have a race condition bug where part of repro steps should mention timing (be fast).
Forgotten Details: When doing adhoc testing, it is easy to run straight into a bug, and bam, you cannot reproduce the bug because you forgotten one or more crucial steps. The only solution is to try and remember exactly what you did (all fidgets, etc.)
Bug Makes Replication Impossible: Sometimes, bugs destroy files, disable interrupts, etc. that makes reproducing it impossible. Be sure to have an easy way of reinstalling everything to repeat these bug types easily (back up necessary files, etc.)
Memory Dependent Bug: Memory can be too fragmented, or insufficient free memory present. Find memory reporting tool that you use to track status as you test.
First Time Only Bugs: These occur only the first time that program is run. Classic example is when program writes out defaults to configuration file (reinstall everything and start over is only repro solution).
Bug Predicated on Corrupted Data: Bug fails only with specific corrupted data (or app corrupts its own data).
Bug is Side Effect of Other Problem: Error recovery problem where initial bug drops execution to error handler, then bug there pops up…repro the first one, and you’ll get the second bug.
Intermittent Hardware Failure: The only truly intermittent bugs that can exist are typically related to heat corrupting data or memory.
Time Dependency: If program keeps track of time, Y2K, or other problems can pop up.
Resource Dependency: Problem especially for multi-processing systems where one process can hog 90% resources and choke another process with only 10%.
Long Fuse: An error may not have an immediate impact—it can be repeated doznes of times before failing. These are nasty…but then to, the visibility is low so it may not be that high of a priority bug, despite the high severity.
Special Cases: in code can exist. Only way to find out is to ask programmer for suggestions on how to reproduce the bug…but do not ask to often.
Tinkered Machine: Someone else could have tinkered with your machine while you were away, do not ignore this, it happens.

�Quiz #6 - Chapter #5

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�
Chapter #6 - The Problem Tracking System

Tracking System Objectives and Tasks
“A problem tracking system exists in the service of getting the bugs that should be fixed, fixed. Anything that doesn’t directly support this purpose is a side issue.”
Anyone who needs to know about a problem should learn of it as soon as it is reported
No error will go unfixed merely because someone forgot about it
No error will go unfixed on the whim of a single programmer
A minimum of errors will go unfixed merely because of poor communication

Problem Tracking Overview

Who Writes the Bug Report
If centralize so that all bugs reported to testing, then bugs are written up correctly and coherently; however, tester will waste time re-writing the bug and may throw away good bugs because not understand, or downplays severity
If let anyone write-up bugs, then inconsistent formatting is bound to result, and many bugs will go unfixed because can not reproduce them
Our model has bugs written up and emailed to the Test Lead for entry into the Bug Tracking System.

Project Manager
Project Manager gets copy of bug (via ONYX lookup)
PM prioritizes the bug after reviewing it
PM may request more information on bug…but must balance tester time vs. developer time, programmer’s tasks on critical path at end of project, etc.

Programmers
Once priority assigned, PM sends bug report to programmers
Use comments to track true or perceived friction from programmers during project
Programmer marks bug as resolved once he thinks it is fixed
Be flexible and understand that fix failure rates of 25%-50% are common and not necessarily the result of lazy programmers
If can not reproduce the bug, then programmer will not fix it (what’s to fix they’ll ask, the program is working fine)

Deferrals
Acknowledges that there is a problem, but PM chose not to fix this release (often justified)
However, if bug should be fixed, then conduct deferred bug review meeting with development team members (don’t wait until last minute to conduct meeting—make routine if necessary)
Re-open these for subsequent release

Ignored Problems
The application does not ship until all bugs are dealt with: be it fixed, postponed/deferred, or other manner of resolution.
It is a good idea to conduct bug triages routinely to review all open bugs and determine when they will be resolved.

Status Reports
Should be done weekly
Should indicate how many bugs have been found (cumulative), and broken down by status codes

Tracking System Users
Test Lead: responsible for tracking system
Other Testers: responsible for reporting bugs, and executing test cases
Project Manager: responsible for assigning priorities, and closing out any bugs that are abnormal (not fixed, but postponed, etc.). Should look for communication problems between testers and programmers, confusion, etc.
Programmer: reads bug report. Has problem if not clear and simple, irreproducible, testers not cooperate, reports get personal, or metrics used to track personal productivity.
Program Manager: powerful ally as quality advocate…but sometimes more focussed on schedule
Technical Support: is accountable to customers with problems, but also to keep costs down. Tech Support is powerful ally in finding and getting bugs fixed also.
Technical Writer: is accountable for user manual and technical support materials or even some marketing materials
Test Manager: responsible for quality of testing effort and supervising testing staff
Senior Managers: don’t care about bugs except in rare high visibility instances. Do not push less serious problems onto senior managers.

Project Manager Frustrations
When they do not get answers in a timely manner
When bugs fixes are not regression tested for days or weeks
When same deferred problems come back over and over
When database is stuffed with trivia or duplicate bugs
When published statistics are misleading (fixed bugs or non-regressed bugs that are resolved, etc.)
When overly simplistic summary reports circulate to senior management
When information in tracking database used to attack PM personally

Publishing Bug Statistics
If Test Manager publishes metrics, then over-emphasizes their significance, can create the following problems:
Disincentive to adding testers late in project (new tester aboard typically = many duplicate bugs)
Disincentive to collecting one last round of design criticisms before UI freeze
Oversensitize PM to duplicate bugs which artificially elevate bug counts
Pressures PM to rapidly defer deferrable bugs rather than wait and see if can fix

Inappropriate Use of Bug Metrics
Flatly refuse to provide personal performance data in support of employee disciplinary actions, no matter what…else will lead to legal problems
Objective of database is to get bugs fixed, not to generate nice management statistics…do not vary from the true objective or you will corrupt the system (and result with an Onyx)

Bug Report Formats
Weekly Summary of New Bugs: lists new bugs for the week as grouped by Functional Area. Issue weekly and be consistent.
Weekly Status Report: shows state of project and how has changed since last week. Issue weekly and be consistent.
Build Cycle Summary Report: summarizes bug count (and test case execution results) for the specified build. Broken down by priority and status. Count of bugs to last build vs. current build.
Milestone Summary Report: summarizes bug counts (and test case execution results) for current milestone. Perhaps listing of any high priority outstanding bugs would be good idea.
Deferred Bug List: should be sent out every two weeks. Should list all bugs that have been deferred. Reviewed periodically, signed off at final milestone.
Unresolved Problem Report: should list all bugs that are still open (not deferred, not closed, but opened or resolved and waiting retesting).
Progress Summary: summarizes project’s progress over time. Can also generate report that contains one line summary per week, or one line summary per build for trending. Can graph the results. Always print out at end of project cycle. Used to justify one more week of testing, or to indicate jumps in bug find rates are normal around alpha and beta, or that many UI bugs are typically found at first few drops to testing.
Patch Tracking: summarize new bugs found in patches (side effects), easier to check back if patch code integrated into next release code.

Further Thoughts on Problem Reporting
Bug Tracking system’s key operating principle is to focus on bugs, NOT politics, NOT measurement, NOT management…just bugs.
All testers will have bug reports that are challenged, but this is better than alternative of omitting bug because not sure if should write-up
Potential pitfalls of writing up bug when should not versus omitting bug when should have written up:
�You write-up bug�You omit bug report��It is a new bug�It gets fixed�Never fixed (consumer risk)��Same old bug (Duplicate)�Waste of time (producer risk)�Gets fixed anyway��Not really a bug�Waste of time (producer risk)�Okay, tester learned, but nobody else loses time��Insignificant bug�May get fixed�May be more important (consumer risk)��
Tester enters and owns Severity, whereas PM enters and owns Priority (this accommodates both points of view.
Comments field allows for free flowing discussion between testers and programmers
Never reword a bug report. The author is the owner, do not allow anyone (including management) to change the write-up except the author—and even they probably should not be permitted to go in and doctor up past reports.
�Quiz #7 - Chapter #6

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�
Chapter #7 - Test Case Design

Characteristics of a Good Test (Case)
Reasonable probability of catching an error
Not redundant
Best of its breed
Neither too simple, nor too complex
Makes program failures obvious

Equivalence Classes
Understanding Equivalence Classes and corresponding Boundary Conditions are critical for testing application thoroughly
All test same thing, if one test catches a bug then all others probably will to, and vice versa.
Typically, involve same input variables, or result in similar operations of program, or affect same output variables, etc.
Can be valid and invalid inputs too
Should organize classifications in table (preferred) or outline
Ranges of numbers are typical equivalence classes: Less than minimum, minimum, acceptable range, maximum, greater than maximum.
Domain membership for values that should be contained in list or Ref table, or lists and menus.
Time determined equivalence classes (before, during and after operation, do XYZ)
Must calculate to certain value or range
Equivalent output events (reports in same group, etc.)

Boundary Conditions
Best test cases typically at the boundary equivalence classes
Must test each edge and all sides of boundary conditions (may overlap with other equivalence classes?)

Visible State Transitions
Form and dialog box changes
Must test all options, and group sequences into equivalence classes

Race Conditions & Other Time Dependencies
Can program be executed to quickly or too slowly?
Attempt disruptions when program is changing states

Load Testing
Test every limit that product’s documentation asserts, or that you can think of
Examples include number of users, size of hard drive, number of files allowed, size of queries, etc.

Error Guessing
Experience and intuition will guide you to certain classes of tests
Logic will not help you here

Automation of Functional Equivalence Testing
Run tests of equivalent boundary conditions and Diff to check if output matches…if not, then problem?
Sensitivity Analysis: as automated routine slightly varies input, does output vary greatly? If yes, potential problem?

Random Input
Randomly select from within equivalence class
True sampling (testing) mandates that samples be randomly selected
Use random input to derive MTBF (thus use of smart monkey)

�Quiz #8 - Chapter #7

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�
Chapter #8 - Testing Printers

Examples of Configuration Testing
Printers: Which printers is the app compatible with?
Video Cards: Which video cards is app compatible with? (Can you imagine testing graphics program on different cards…endless!)
Mice: Which mice is app …
RAM: What range does app work optimally within? What is drop dead minimum?
Computers: What type of computer does app work with?
Operating System: What type of operating system does app work on?

Seven Steps to Good Configuration Testing
Analyze Market: Which devices are mandatory, and which are optional, and prices…
Analyze Device: How does it work, what is impact to testing, features?
Analyze Ways Software can Drive Device: How breakdown groups of devices into equivalence classes
Save Time: Test only one device per group until all errors eliminate, then expand to other devices in group
Improve Efficiency: Look for ways to improve efficiency and save time on repetitious and boring tasks. Organize lab effectively. Make precise record-keeping system to make it easy to track and communicate what has been done.
Share Experience: Organize and share research and test results so next project will research, plan and test more efficiently.
Device Interaction: Try combinations of devices for conflicts.

�Quiz #9 - Chapter #8

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�
Chapter #10 - Testing User Manuals

Effective Documentation
Improves Usability: Leads to faster learning, fewer errors, and better throughput.
Lowers Customer Support Costs: If user can not answer questions or resolve problems from User Guides, then will call.
Improves Reliability: Unclear and inaccurate documentation makes product less reliable because users needlessly make errors.
Increases Maintainability: Much time and effort spent on tracking down problems that wind up being user errors…better documentation prevents the confusion.
Improves Installability: Installation can be very complex; thus, it follows that better documentation will reduce installation problems and tech calls.
Enhances Salability: Documentation quality is often a selling feature.

Documentation Tester’s Objective
Improve accuracy, completeness, clarity, ease of use, etc.
Lookout for confusion
Do *not* demand stylistic changes

How Testing Documentation Contributes to Reliability
You will find more bugs than you expect. Tester looks at program differently than does tech writer.
Important source of usability tests and other real world test cases.
Bug reports based on documentation testing are highly visible, and highly credible, thus high likelihood of getting fixed.
Use program exactly as manual states, step by step (you will find omitted steps).
Try every suggestion, if those not fully spelled out.
Verify every statement of fact

Testing Techniques for Manuals
The First Draft
You will rarely see first draft of manual (tech writer keep to himself)
If you do get to test this, be certain *not* to comment on style, structure or organization at this time

The Second Draft
Make structural comments early (order of chapters, combine chapters, etc.) so easier to change
Do good general review: review accuracy, clarity, usability, and completeness
Look for omissions or areas that need discussion
Look for violations of spirit of design such as high-level mis-conception between features, etc. Example would include writing up one methodology for using the app when better one exists
Look for things that mislead user, or confusions that writer can’t adequately describe

Revised Second Draft
Look for same things as second draft above
Focus on accuracy and effectiveness

Beta Test Draft
Ditto above
Manual should be task-oriented (training guide), not feature oriented (reference guide)

Online Help
Check for the following test case areas:
Accuracy: check closer than even manual
Programming: must also check the programmer / tech writer interface. Example would be hyper link jumps
Test Index: check list of topics and jump through all items to verify they work
Style: Few customers meander through help…they are focused, and looking for specific information – be sure they can easily get at it.

�Quiz #10 - Chapter #10

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�Chapter #11 - Testing Tools

Fundamental Tools
PC/Terminal: heh heh heh
Email: Essential for communication
Word Processor: Write-up test plans, test specs, reports, memos, and letters
Spreadsheet: Mandatory for creating test matrices
File Comparison Utility: Compares two files, listing out all differences (Absolutely essential to tester)
File Viewers: View files of multiple formats on disk
File Format Converters: Convert data files, text files, graphic files, etc. from one format to another
Memory Utilities: Eat up memory to test low memory conditions, memory reporting tools, etc.
Screen Capture Utilities: Dump contents of screen or current window to printer or file.; probably will need a few different utilities because each have quirks
String-Finding Utilities: Search object code for ASCII text; lookup error messages; count records in flat file; etc.
A VCR: Videotape screen output from most microcomputers using special video cards; no substitute for capturing repro steps easily; proof that bug exists
Hardware & Configuration Diagnostics: Indicate what devices successfully connected to computer, how well functioning, etc. Examples include spotting bad disk sectors, bad memory blocks, video cards on the fritz, etc.
Software Diagnostics: Load in memory before loading program to test specific types of errors, including: memory and stack states, hard drive space, CPU usage (performance), etc.
Stopwatch: Use it to time time-out intervals, feature performance, etc.
Bug Tracking System: We use ONYX to track bugs…so important, got its own chapter
Programmer: Programmer can save you days or even weeks of wasted time by asking right questions

Automated Acceptance and Regression Tests

General Notes
Acceptance test cases all run for each new build dropped to testing
Objective is to quickly identify any serious problems to the core functionality of program
Repetition (build after build) can make tests boring, and don’t want to waste time either, thus number of acceptance test cases may be relatively small

Source of Regression Tests
Preplanned TC’s: Go through boundary conditions and other planned / structured tests and derive BAT cases from them
High Bug Rate TC’s: What was once fixed, is often re-broken
Customer-Reported Bugs: Tester not find it, thus indicates hole in Test Plan; so add in as potential for higher re-work rate
Random Test Data: Batteries of randomly generated test data can be repeatedly run through system

Feeding Input to Program (Automation Technique)
Data Files: Setup different input data files testing all equivalence classes…even randomly generated data to test for sequence issues
Batch Files: Use batch files to drive building of datasets (run different SQL scripts to setup various data scenarios, etc.)
Input Redirection: Hmm, output would be useful for exporting reports to XL and run cross-check calculations…but input left with the DOS era…now use VT.
Serial Input: Hmm, does anybody use this? Can we use it in Windows?
Keyboard Capture & Replay: Visual Test

Evaluating Output
Reference Program: Find program that already does what your app does, and compare outputs of each
Create Parallel Program: One is efficient, compact code streamlined for performance, and the other is test code that is just banged out quickly. Results of each should always match, scrutinized discrepancies
Build Library of Correct Outputs: Build set of correct report outputs to be used to compare against subsequent runs (can automate if print to files)
Imprecise: Not as easy as simply comparing subsequent outputs, how tell program to ignore print date changes, placement of data in output, etc.? Need tool that permits selective comparison (like VT with screen capture and comparison).

Automation Risks
Time Cost: Takes long time to create automated tests…if only run the test case 4-5 times, why spend the time automating when much quicker to write-up and execute manually?
Testing Delay: If delay significant testing while awaiting completion of automated test battery, then disservice to project (programmers and everybody else held up)
Inertia: Once test suite created, programmer changes can ripple through much or all of your automated test code…requiring much effort to keep up to date
Risk of Missed Bugs: Automated test case execution not monitored as closely as manual test cases (lack of babysitting is appeal of automation); thus great risk of large, obvious, and embarrassing bugs being missed—you won’t read all the printouts, so be sure automation flags errors very obviously for you
Partial Automation: Can automate some test cases (25-50%), but still manually execute remainder. Can even partially automate test case, and leave remainder to manual execution.

Standards Checkers
These are typically white box tools that parse source code…thus, we will ignore them for our purposes

White Box Testing
Instrumented Code
Logs what areas of app have been executed during test pass…continue testing until all functions or lines of code have been covered
These are just test builds that will never be shipped
Builds include code modifications that call out to logging routine
Purchase 3rd party product, or use the one built into VB Enterprise Edition

Assertion Checks
Programmer often knows that variable must be certain value at this or that point of program; thus app should confirm the assumption by testing the assertion, and raise an easily identifiable error or pre-emptively handle the error should the assertion fail
Used to capture bugs caused when a fix in part A breaks part B
Used to help track down bugs that are difficult to reproduce
Used to facilitate the discovery of otherwise undetectable bugs (tester not even realize an expected value varies from the actual value)
Typically can easily turn on and off assertion checks for sections of the program (only activate for specific checks or when attempting to reproduce a difficult bug)
�Quiz #11 - Chapter #11

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�
Chapter #12 - Test Planning and Test Documentation

Objective of Test Plan: Product vs. Tool
There are two very different reasons to write a Test Plan: Product or as a Tool
Objective of Product is much more expensive
Good Test Plan organizes and manage the testing effort

Test Plan as Product
Can be carried beyond minimal role above and be treated as product in themselves
This can be acceptable if contracting for another company and producible is report, or government agency spec mandates it, FDA mandates it for healthcare products
Remember, that if you can spend the extra time finding bugs instead of polishing the report, then more bugs will be found and fixed

Test Plan as Tool
Creating huge, massively detailed test plans is often not best use of limited time
Standards will help you produce more paperwork, and at a faster rate…but will it find more bugs in the end?

Detailed Objectives of Test Planning and Documentation
Test Documentation facilitates technical tasks of testing
Test Documentation improves communication about testing tasks and process
Test Documentation provides structure for organizing, scheduling, and managing testing process
May as well understand benefits of all hours invested in test documentation

Facilitates Technical Tasks of Testing
Improves Test Coverage: lists of features, components, forms, error messages, hardware configurations, etc. reduce omissions
Avoid Unnecessary Repetition: Following checklists in test specs and other documentation will avoid duplicate effort, and checking off progress will do same plus avoid omissions
Analyze Program for Good Test Cases: Here is where Test Spec is helpful. Be thorough.
Provide Structure: Final integration test is done easier in spite of release pressure because structure in place
Improve Test Efficiency: by reducing number of tests without substantially increasing number of missed bugs: boundary condition analysis and runs from equivalence classes, configuration testing coverage, etc.
Check Completeness: Look for holes in Test Plan due to: overlooked areas of program, overlooked classes of bugs, overlooked classes of tests, or simple oversight (of test cases)

Improves Communication of Testing Tasks and Processes
Thinking Behind Test Strategy: Explains testing approach—the what, why, and how’s
Elicit Feedback on Scope: about testing accuracy and coverage—readers will point you to holes in test plan, misunderstandings, and other potential test errors early on
Size of Testing Job: Communicates size of job by indicating all areas tested; justifies number of testers, length of testing time, etc.
Elicit Feedback on Depth and Timing: Test Plan can generate lot of controversy—too little or too much testing, unnecessary schedule delays, etc. Test Plan helps focus discussions at meetings and eliminate confusion
Pass Off: Much easier to delegate and supervise testing of app if can pass next tester a written, detailed set of instructions

Provides Structure for Organizing, Scheduling, and Managing Project Testing
Reach Agreement about Test Tasks: Specifically identify what will (and what will not) be performed by testers. Let all other team members review Test Plan, and contest issues so that can resolve them way in advance.
Identify Tasks: Once scope is defined, can justify resources needed (money, time, people, and equipment)
Structure: Group like tasks, assign groups to same person
Organize: Identify who does what tests, how they’ll perform the tests, where, when, and with what resources (special hardware/software, people, etc.)
Coordinate: Delegate work based on sections of Test Plan
Improve Accountability: Testers understand their duties, helps identify significant staff or test plan problem, if miss bug upon release track back through Test Cases, Test Spec, and look if not covered in Test Plan.

Test Types to Cover in Test Planning Documents

White Box Testing
This is development’s responsibility, so we will not document it
Glass Box (White Box) Testing misses: omissions; timing related bugs, unanticipated error conditions, special data conditions, invalid onscreen info., UI everything, interaction with background tasks, configuration/compatability, volume/load/hardware faults

Black Box Testing
Acceptance Tests: Verify build can be more thoroughly tested
Control Flow: GUI control flow (menus, dialogs, etc.) *not* internal program flow
Data Flow and Integrity: Backend testing, parent/child relationships broken, table and field naming conventions, inconsistent names, varying data types primary key vs. foreign key, etc.
Configuration & Compatibility: Hardware, O.S., etc.
Stress Tests: Number of simultaneous users, number of simultaneous queries, amount of remaining RAM is small, etc.
User Interface: Typical
Regression: Functional, and “resolved” bugs need to be re-tested
Performance: Benchmark functionality, and cross-check on various platforms, various builds, etc.
Potential Bugs: Lists of potential bugs or test cases (Test Spec)
Beta Tests: Who conducts, who send to, what is state of app, what is beta plan, etc.
Release Tests: What are minimum criteria for release (no priority 1 or 2 bugs remain open, etc.)
Utility: Usability test performed by Tech Support, Users, etc. Scenarios that users will most likely run should be executed now one more time

Waterfall vs. Evolutionary Model SDLC
Waterfall: Traditional Method, start with planning, then design, then development, then stabilization.
Evolutionary: Receive core, plan tests and execute, receive new functionality, plan new tests and execute, etc. Start with small test plan and build up as you learn the product rather than from start.
Waterfall method forces analysis and test planning early and execution of tests later…but you learn most about product later when test it…Matt says true, but you still should get as much planning as possible done up front, then accept the 30-50% changes that typically occur as you learn the app. To just focus in on the details of testing without understanding the big picture until late in the game is a dangerous and risky position to put oneself in.
Significant changes to functional and design specs will necessitate changes to test plan…so suggested that you hold off on your planning until needed…but (Matt) what if could have established clear communication up front and eliminated confusion…you forfeit the opportunity by waiting!
Matt strongly suggests that you learn the product as well as possible up front, assess risks, identify bugs, etc. early on when the fixes are cheap relative to later after app is built.
Matt believes: evolutionary means: don’t plan, just fly blind and build as you go…waterfall is only method where plan in place.
Matt believes evolutionary approach frequently leads to out of control projects with no target…must invoke time-boxing if use evolutionary model
Construction has equivalent method called “fast-tracking”—big difference is that all project personnel have done similar projects before.
We will talk about this again in the next chapter.

Tactics of Evolution
Hmm, I think better suited for Guided Adhoc testing…I am strongly set against the Evolutionary Model as the preferred method (as is most people in testing industry—except Kaner)
Test against documentation – will find many good errors
Start with Test Spec, or Function List, or Test Checklist
Do simple analysis of limits (boundaries)

Where to Focus Next
Most likely errors – bugs are centralized in same modules (studies indicate 47% of bugs centralized in just 4% of modules)
Most visible errors - start where customers will notice errors first (most often used areas
Distinguishing areas of app - if selling point is that app does X, Y, and Z; then be darned certain to test X, Y, and Z
Hardest area to fix - ask programmer worst place in app to fix problems…then go though and test
Most understood by you - test what you know first, then learn and expand testing as you go along—hmm, what about test plan, test cases, etc.? Well next section indicates that you add lists decision trees, boundary charts, test matrices, etc. to your test plan to add depth as you learn the app..Agreed.

Test Planning Documents

Lists
Simple to make. Once made, don’t have to remember anything on the list or worry about omissions if lists are thorough.
List of reports and data entry screens
List of features and functions
List of program’s files
List of error messages
List of compatible hardware
List of compatible software
List of compatible operating systems
List of public documents

Tables
Lists do not organize information, just present it. Tables use to show relationships between items in a list and other criteria.
Table of reports
Input / output table (data storage, barcodes, etc.)
Decision table
Decision tree (excellent tool lifted from statistics field, pg 230)
Printer compatibility table
Boundary charts

Outlines
Outlines take lists one step further by adding a hierarchical order to the plain lists. This order breaks down lists into groups and sub groups and sub-sub groups, etc. Use this grouping feature to rollup summary results, etc.
Function list
Test Spec

Matrices
Matrices are tables in format, but have a different objective. A table’s main function is descriptive. A matrix’s main function is data collection
Hardware & feature compatibility matrix
Hardware combination matrix
Environment matrix
Input combination matrix
Error message and keyboard matrix

Documenting Test Materials

Personal Notes
Simplest of documents
Used to jog memory: describe tests to run again, what’s been done, what has not been done, and answer programmer’s questions – Test Cases should supplant the need for these notes (sic)
Notes for another team member: describe how to run tests, expected results of each test, significance, special instructions, which tests conducted regularly, and what tests are looking for – Again, Test Cases and Bug Reports should supplant the need for these notes (sic)

Other Notes
Notes to be used in subsequent releases should again be either Bug Reports (deferred), Test Cases, or included in milestone reports or test release reports
Test Scripts for inexperienced tester – again, use TCM, not notes
Notes for your manager – use the Weekly Summary Report format, or email…don’t bother with these notes

Test Plan
Test Plan Identifier: Unique name or number
Introduction: Includes references to all standards and other docs used in creation of Test Plan
Test Items: List all functions, modules, features, etc. to be tested—if necessary simply reference Design Spec., or other document containing detailed breakdown
Features to be Tested: Cross-reference them to test design specification
Features Not to be Tested: Which ones and why not
Project Test Approach: Overall approach to testing (extract from department Test Approach document): who does it, main activities, techniques, and tools
Item Pass/Fail Criteria: How does tester decide if program has passed or failed Test Case?
Suspension Criteria / Resumption Requirements: List anything that would cause you to stop testing until it’s fixed -- that’s what Build Acceptance Tests are for!
Test Deliverables: List all testing documents that will be produced
Testing Tasks: List all tasks necessary to prepare and do testing. Include special skills, who has the skills and will test those tasks, dependencies, effort involved, and when high-level tasks will be done
Environmental Needs: Describe necessary hardware, software, testing tools, lab facilities, etc.
Responsibilities: Name who is responsible for what tasks, producibles, areas, etc.
Staffing and Training Needs: How many people you need at each skill level, and what training they need
Schedule: List all milestones with dates, and when resources needed
Risks & Contingencies: What are highest risk assumptions in test plan? What can go sufficiently wrong to delay schedule or increase cost, and what is mitigation strategy?
Approvals: Who has to approve plan; leave space for signatures

Miscellaneous Test Specs
Test Design Spec: Okay, whatever
Test Case Spec: Okay, whatever
Test Procedure Spec: Okay, whatever
Test Item Transmittal Report: Okay, whatever
Test Script: Equivalent to our Test Cases
Test Log: Equivalent to our Logged Test Case Execution Results
Test Incident Report: Equivalent to our Bug Reports
Test Summary Report: We need to build a quick summary report into TCM that indicates what test cases were run, and status of each for given build

�Quiz #12 - Chapter #12

Students need to write up and answer their own questions to be reviewed at start of next class period.�
�
Chapter #13 - Tying It All Together

Software Development Tradeoffs
Reliability: Project Manager can always ship sooner with less testing and more bugs (less reliability)
Features: One method of shortening project is to cut scope (feature set); however, cutting an important feature can harm customer satisfaction so be careful
Dollars: Project Manager can try to crash schedule and rush project by throwing dollars at new tools, additional personnel, high-level consultants, etc. Dangerous to play around too much with dollars without first planning it out (sic)
Release Date: If behind schedule, just push off the release date…but recognize that direct costs of development continue along, window of opportunity (market advantage) may slip by, marketing costs wasted since delay may mean new round of release promotions, alternative project opportunity cost (could have been working on something else), and cashflow conflicts

Software Development Models
Here we go again…

Traditional Waterfall Method
Projects progressing in stages from requirements analysis to internal and external top-level design to internal and external deeper design, then to coding, then to testing, then to release
Once group of tasks is largely (not not necessarily completely) finished before the next begins
Approach most testing groups ask programming groups to use
Gets specifications into hands of testers before testing begins to focus and define project
Limits number of late changes in design or implementation of project
Waterfall originated in environment of custom software development contracts where buyer list requirements early in project to control project costs
Unfortunately, waterfall forces dev team to make design and functionality decisions at start of project when understanding of project is at lowest (that’s why you plan, to understand it better—sic)
Tradeoffs at end of Waterfall Cycle:
Reliability: Tremendous pressure on testing to hurry up and get the product out the door…tempted to ship with bugs that should be fixed
Features: Eliminating requirements offers little benefit to schedule since design and coding of all features already done. (Not necessarily, if code and test in phases of 3 interim milestones, the design all features, but complete only set 1, or set 1+2 if not have time for subsequent features—sic)
Dollars: Easier to add programmers since nice detailed plans to follow
Release Date: So much preparatory work already done, that unlikely drop any features, thus extending release date is only option (FALSE, read my comments on Features)

Evolutionary Method
Characterized by incremental feature additions to core product
Testers formally test the core product, then continue testing it over and over as new features added
As new feature sets added, a new cycle of testing occurs until the new feature set (plus existing features and core) have been debugged and stabilized
Dev Team can stop at any point and feel confident that the previously debugged and stabilized feature set can be shipped
Tradeoffs at end of Evolutionary Cycle:
Reliability: is high because program re-tested and stabilized after addition of each new feature set. Difficult to just stop testing and release something buggy because can rollback to stable feature set build
Features: Easy to drop features and revert to prior tested and stable feature set build
Dollars: Management has option to quickly add features rather than dropping them by spending money…
Release Date: Power of evolutionary model is schedule control it gives management. Project Manager can postpone release date, or ship on time minus last few feature sets.
One way to dork up Evolutionary Model is to have developers continue coding new features without stabilizing the last feature set—defeats the purpose of the model, and result is a runaway project that never completes
Another risk is PM who mistakenly thinks doesn’t need much initial planning with this model—BIG MISTAKE—if core is built inflexibly, or architecture not clearly defined early on, result will be extensive re-work as later feature sets are incorporated
Test Manager can ruin things by not bringing in sufficient testers early enough—the core goes untested until too late (many features built on top of faulty core requiring extensive re-work)

Product Design Phase
Program Manager Activities
Requirements
Specifications
Proposals
Contracts

Programmer Activities
Specifications
Internal Design
External Design

Marketing Activities
Market Research: Focus groups, customer surveys, analyze competing products

Tech Writing Activities
Assign in drafting of specifications

Testing Activities
Learn about product
Review specs, design, proposal
Ask for testing support code incorporated (memory meter, cheat keys, screen dump, printer automation—batches, etc.)
Analyze stability of 3rd party products
Review UI for consistency
Negotiate early testing structure
Start setting up relationships with any vendors
Review competitors’ products
Start looking for beta testers

Fragments Coded: First Functionality Phase
Program Manager Activities
Specifying

Programmer Activities
Designing
Programming
Unit Testing

Testing Activities
Initial informal testing
Start formal tests of product core (generate test cases)
First informal estimates of tasks, resources, time and budget

Almost Alpha Phase
Program Manager Activities
Specifying

Programmer Activities
Designing
Coding
Bug Fixing
Unit Testing

Tech Writing Activities
Documentation plan
Review manual plan and help plan

Testing Activities
Order equipment for testing
Borrow equipment for testing
Set test objectives, tasks, and time
Write first draft of Test Plan
Identify testing risks
Do mainstream testing (find bugs)
Waterfallers review final spec

Alpha Phase
Programmer Activities
Coding
Bug Fixing
Unit Testing
Revise Design

Marketing Activities
Packaging
Collaterals

Tech Writing Activities
First draft of manual(s)
First draft of help system

Testing Activities
Find lots of bugs; test all areas
Structured testing
Guerrilla (adhoc) testing
Review Test Plan
Raise design issues
Estimate probable number of bugs
Get final list of supported devices
Start configuration testing
Begin adding regression tests
Review and publish resource needs
Begin developing acceptance test
Start automating tests

Pre-Beta Phase
Programmer Activities
Fix Bugs

Testing Activities
Check whether app can enter Beta (all Priority 1 and 2 bugs resolved)

Beta Phase
Programmer Activities
Finish features
Fix bugs
Revise UI
Installation code
Sample artwork
Customize installation disks for beta testers

Marketing Activities
Packaging
Collaterals
Disk Labels
Support beta sites
Send beta copies to reviewers

Tech Writing Activities
Multiple drafts & reviews of manual and help
Screen shots
Technical tables
Troubleshooting
First draft index
Late starting help starts now

Testing Activities
Get approval of final Test Plan
Continue executing & adding depth to test plan
Keep automating
Review marketing materials
Review documentation
Retest fixed bugs quickly
Publish formal test summaries
Deferred bug meetings
Review UI, prepare for UI freeze
In-House and outside beta tests
Measure and publish testing progress against milestone targets

User Interface Freeze Phase
Programmer Activities
No more visible changes
Bug fixes
Improve speed
Final data
Final installation
Final disk configuration

Marketing Activities
Promoting and Selling
Stickers to cover up errors on packaging

Tech Writing Activities
Fix help text
Screen shots
Layout and print the manual

Testing Activities
Prune and run regression tests
Execute test plan
No more design issues
Look for show stoppers, data corruption, memory allocation
Push for resolution of open bugs

Pre-Final Phase
Programmer Activities
Fix bugs

Marketing Activities
Promote & sell

Tech Writer Activities
Manual supplement
Final help file fixes

Testing Activities
Flag problems for supplement
Regression tests
Try one final full pass through Test Plan (execute all test cases)
Re-test old bug fixes
Tie up project’s loose ends
Circulate final deferred bug list
Evaluate program’s reliability

Final (Integrity) Test Phase
Programmer Activities
Fix bugs
Code the demo (use demo-it, or Lotus Screen-Cam, or Office97 screen cam)
Archive Source Code

Marketing Activities
Promote & sell

Tech Writer Activities
Send supplement to printer
Last tweaks to on-disk readme.txt file

Testing Activities
Evaluate first day of use reliability
Predict reviewer comments
Mainstream tests
Audit test plan and bugs
Make disk master copies
Check for viruses on master copies
Archive everything to CD

Release Phase
Programmer Activities
Party, then sleep

Marketing Activities
Sell, sell, sell

Tech Writing Activities
Party, then sleep

Testing Activities
If necessary, continue testing during manufacturing
Sleep, then party

Depth vs. Breadth in Testing
Mainstream Testing: relatively gentle tests, ask how program fares under normal use
Guerrilla Testing: a short series of nastiest tests you can quickly imagine
Intense Planned Testing: a longer series that includes best ideas for exposing problems in this area of concern
Regression Testing: a series that you run each cycle. Ideal series checks every aspect of area of concern in minimal time (BAT, Smoke, and probably Critical Path test cases)

�Quiz #13 - Chapter #13

Students need to write up and answer their own questions to be reviewed at start of next class period.�

TEST101	- � PAGE �
78
� -	Autumn 1997

